Influence of inlet boundary conditions in computations of turbulent jet flames

2018 ◽  
Vol 28 (6) ◽  
pp. 1433-1456 ◽  
Author(s):  
Michał T. Lewandowski ◽  
Paweł Płuszka ◽  
Jacek Pozorski

Purpose This paper aims to assess the sensitivity of numerical simulation results of turbulent reactive flow to the formulation of inlet boundary conditions. The analysis concerns the profiles of the mean velocity the turbulence kinetic energy k and its dissipation rate ϵ. It is intended to provide guidance to the determination of inlet conditions when only global flow data are available. This situation can be met both in simple laboratory experiments and in industrial full-scale applications, when measurements are either incomplete or infeasible, resulting in lack of detailed inlet data. Design/methodology/approach Two turbulence–chemistry interaction models were studied: eddy dissipation concept and partially stirred reactor. Three different velocity profiles and related turbulence statistics were applied to present feasible scenarios and their consequences. Simulations with the most appropriate inlet data were accompanied with profiles of turbulent quantities obtained with a proposed method. This method was contrasted to other approaches popular in the literature: the pre-inlet pipe and the separate cold flow simulations of a burner. The methodology was validated on two laboratory-scale jet flames: Delft Jet-in-Hot-Coflow and Sandia CHN B. The simulations were carried out with open source code OpenFOAM. Findings The proposed relations for turbulence kinetic energy and its dissipation rate at the inlet are found to provide results comparable to those obtained with the use of experimental data as inlet boundary conditions. Moreover, from a certain location downstream the jet, weakly dependent on the Reynolds number, the influence of inlet conditions on flow statistics was found to be negligible. Originality/value This work reveals the consequences of the use of rather crude assumptions made for inlet boundary conditions. Proposed formulas for the profiles for k and epsilon are attractive alternatives to other approaches aiming to determine the inlet boundary conditions for turbulent jet flows.

Author(s):  
A.C. Benim ◽  
K. Ozkan ◽  
M. Cagan ◽  
D. Gunes

PurposeThe main purpose of the paper is the validation of a broad range of RANS turbulence models, for the prediction of flow and heat transfer, for a broad range of boundary conditions and geometrical configurations, for this class of problems.Design/methodology/approachTwo‐ and three‐dimensional computations are performed using a general‐purpose CFD code based on a finite volume method and a pressure‐correction formulation. Special attention is paid to achieve a high numerical accuracy by applying second order discretization schemes and stringent convergence criteria, as well as performing sensitivity studies with respect to the grid resolution, computational domain size and boundary conditions. Results are assessed by comparing the predictions with the measurements available in the literature.FindingsA rather unsatisfactory performance of the Reynolds stress model is observed, in general, although the contrary has been expected in this rotating flow, exhibiting a predominantly non‐isotropic turbulence structure. The best overall agreement with the experiments is obtained by the k‐ω model, where the SST model is also observed to provide a quite good performance, which is close to that of the k‐ω model, for most of the investigated cases.Originality/valueTo date, computational investigation of turbulent jet impinging on to “rotating” disk has not received much attention. To the best of the authors' knowledge, a thorough numerical analysis of the generic problem comparable with present study has not yet been attempted.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 247-256 ◽  
Author(s):  
Bian Tian ◽  
Huafeng Li ◽  
Ning Yang ◽  
Yulong Zhao ◽  
Pei Chen ◽  
...  

Purpose It is significant to know the real-time indexes about the turbulence flow of the ocean system, which has a deep influence on ocean productivity, distribution of the ocean populations and transmission of the ocean energy, especially the measurement of turbulence flow velocity. So, it is particularly urgent to provide a high-sensitivity, low-cost and reliable fluid flow sensor for industry and consumer product application. This paper aims to design a micro fluid flow sensor with a cross beam membrane structure. The designed sensor can detect the fluid flow velocity and has a low kinetic energy dissipation rate. Design/methodology/approach In this paper, a micro fluid flow sensor with a cross beam membrane structure is designed to measure the ocean turbulence flow velocity. The design, simulation, fabrication and measurement of the designed sensor are discussed. By testing the simply packaged sensor in the fluid flow and analyzing the experiments data, the results show that the designed sensor has favorable performance. Findings The paper describes the tests of the designed sensor, and the experimental results show that the designed sensor can measure the fluid flow velocity and has a sensitivity of 11.12 mV/V/(m/s)2 and a low kinetic energy dissipation rate in the range of 10-6-10-4 W/kg. Originality/value This paper provides a micro-electro-mechanical systems fluid flow sensor used to measure ocean turbulence flow velocity.


2011 ◽  
Vol 8 (1) ◽  
pp. 015-026
Author(s):  
Ewa Błazik-Borowa

The paper is devoted to the problem of boundary conditions influence on the quality of the solution obtained with use of k-ε turbulence models. There are calculation results for different boundary conditions and two methods: standard k-ε and RNG k-ε in the paper. The flow parameters obtained from the calculation are compared with our own measurement results. Moreover, the influence of input data on the inflow edge on sensitivity coefficients is shown and analysed in the paper. The research is performed for components of velocity and turbulence kinetic energy.


2002 ◽  
Vol 32 (9) ◽  
pp. 2619-2639 ◽  
Author(s):  
R-C. Lien ◽  
E. A. D'Asaro ◽  
M. J. McPhaden

Abstract In the shear stratified flow below the surface mixed layer in the central equatorial Pacific, energetic near-N (buoyancy frequency) internal waves and turbulence mixing were observed by the combination of a Lagrangian neutrally buoyant float and Eulerian mooring sensors. The turbulence kinetic energy dissipation rate ε and the thermal variance diffusion rate χ were inferred from Lagrangian frequency spectral levels of vertical acceleration and thermal change rate, respectively, in the turbulence inertial subrange. Variables exhibiting a nighttime enhancement include the vertical velocity variance (dominated by near-N waves), ε, and χ. Observed high levels of turbulence mixing in this low-Ri (Richardson number) layer, the so-called deep-cycle layer, are consistent with previous microstructure measurements. The Lagrangian float encountered a shear instability event. Near-N waves grew exponentially with a 1-h timescale followed by enhanced turbulence kinetic energy and strong dissipation rate. The event supports the scenario that in the deep-cycle layer shear instability may induce growing internal waves that break into turbulence. Superimposed on few large shear-instability events were background westward-propagating near-N waves. The floats' ability to monitor turbulence mixing and internal waves was demonstrated by comparison with previous microstructure measurements and with Eulerian measurements.


1980 ◽  
Vol 101 (1) ◽  
pp. 159-178 ◽  
Author(s):  
S. Yavuzkurt ◽  
R. J. Moffat ◽  
W. M. Kays

Hydrodynamic data are reported in the companion paper (Yavuzkurt, Moffat & Kays 1980) for a full-coverage film-cooling situation, both for the blown and the recovery regions. Values of the mean velocity, the turbulent shear stress, and the turbulence kinetic energy were measured at various locations, both within the blown region and in the recovery region. The present paper is concerned with an analysis of the recovery region only. Examination of the data suggested that the recovery-region hydrodynamics could be modelled by considering that a new boundary layer began to grow immediately after the cessation of blowing. Distributions of the Prandtl mixing length were calculated from the data using the measured values of mean velocity and turbulent shear stresses. The mixing-length distributions were consistent with the notion of a dual boundary-layer structure in the recovery region. The measured distributions of mixing length were described by using a piecewise continuous but heuristic fit, consistent with the concept of two quasi-independent layers suggested by the general appearance of the data. This distribution of mixing length, together with a set of otherwise normal constants for a two-dimensional boundary layer, successfully predicted all of the observed features of the flow. The program used in these predictions contains a one-equation model of turbulence, using turbulence kinetic energy with an algebraic mixing length. The program is a two-dimensional, finite-difference program capable of predicting the mean velocity and turbulence kinetic energy profiles based upon initial values, boundary conditions, and a closure condition.


2004 ◽  
Vol 126 (4) ◽  
pp. 665-670 ◽  
Author(s):  
Robert E. Spall ◽  
Elgin A. Anderson ◽  
Jeffrey Allen

The evolution of the streamwise momentum flux for two turbulent, plane, parallel jets discharging through slots in a direction normal to a wall was studied both numerically and experimentally. The numerical results, obtained by solving the Reynolds-averaged Navier-Stokes equations employing a standard k−ε turbulence model, predicted to within experimental error measured integrals of the momentum flux downstream of the merge point for jet spacing S/d=5. Integration of the streamwise component of the Reynolds-averaged Navier-Stokes equations over a control volume results in an integral constant that was evaluated numerically for jet spacings S/d=3, 5, 7, 9, and 11, and for different levels of turbulence kinetic energy and dissipation rate at the jet inlet boundaries. Results revealed that the integral constant is decreased as the jet spacing increases, and is also decreased as jet entrainment rates are increased due to higher levels of inlet turbulence kinetic energy, or alternatively, decreased levels of dissipation rate. Streamwise distance to the merge point was also found to decrease for increased levels of turbulence kinetic energy or decreased levels of dissipation rate at the jet inlet.


Sign in / Sign up

Export Citation Format

Share Document