A sensitivity study of relaxation parameter in Uzawa algorithm for the steady natural convection model

Author(s):  
Xianzhu Li ◽  
Pengzhan Huang

Purpose This paper aims to study the sensitivity of relaxation parameter in Uzawa method for the steady natural convection model. Design/methodology/approach Based on the continuous sensitivity equation method, associated sensitivity system is formed, which is solved by applying finite element method. Findings A decrease in sensitivity values of velocity, pressure and temperature is observed as the relaxation parameter increases. Originality/value The sensitivity study of relaxation parameter in Uzawa method is the first for the natural convection model, to the best of the authors’ knowledge. In fact, it is difficult to find an optimal relaxation parameter in the Uzawa method for the nonlinear problems. It is therefore important to understand how small changes in the relaxation parameter could affect the numerical solution of the nonlinear equations.

Author(s):  
Abdelraheem M. Aly

Purpose This paper aims to adopt incompressible smoothed particle hydrodynamics (ISPH) method to simulate MHD double-diffusive natural convection in a cavity containing an oscillating pipe and filled with nanofluid. Design/methodology/approach The Lagrangian description of the governing partial differential equations are solved numerically using improved ISPH method. The inner oscillating pipe is divided into two different pipes as an open and a closed pipe. The sidewalls of the cavity are cooled with a lower concentration C_c and the horizontal walls are adiabatic. The inner pipe is heated with higher concentration C_h. The analysis has been conducted for the two different cases of inner oscillating pipes under the effects of wide range of governing parameters. Findings It is found that a suitable oscillating pipe makes a well convective transport inside a cavity. Presence of the oscillating pipe has effects on the heat and mass transfer and fluid intensity inside a cavity. Hartman parameter suppresses the velocity and weakens the maximum values of the stream function. An increase on Hartman, Lewis and solid volume fraction parameters leads to an increase on average Nusselt number on an oscillating pipe and left cavity wall. Average Sherwood number on an oscillating pipe and left cavity wall decreases as Hartman parameter increases. Originality/value The main objective of this work is to study the MHD double-diffusive natural convection of a nanofluid in a square cavity containing an oscillating pipe using improved ISPH method.


2013 ◽  
Vol 39 (1) ◽  
pp. 105-118
Author(s):  
Jacek Kurnatowski

Abstract Identification of coefficients determining flow resistance, in particular Manning’s roughness coefficients, is one of the possible inverse problems of mathematical modeling of flow distribution in looped river networks. The paper presents the solution of this problem for the lower Oder River network consisting of 78 branches connected by 62 nodes. Using results of six sets of flow measurements at particular network branches it was demonstrated that the application of iterative algorithm for roughness coefficients identification on the basis of the sensitivity-equation method leads to the explicit solution for all network branches, independent from initial values of identified coefficients.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 1187-1225 ◽  
Author(s):  
Nicola Massarotti ◽  
Michela Ciccolella ◽  
Gino Cortellessa ◽  
Alessandro Mauro

Purpose – The purpose of this paper is to focus on the numerical analysis of transient free convection heat transfer in partially porous cylindrical domains. The authors analyze the dependence of velocity and temperature fields on the geometry, by analyzing transient flow behavior for different values of cavity aspect ratio and radii ratio; both inner and outer radius are assumed variable in order to not change the difference ro-ri. Moreover, several Darcy numbers have been considered. Design/methodology/approach – A dual time-stepping procedure based on the transient artificial compressibility version of the characteristic-based split algorithm has been adopted in order to solve the transient equations of the generalized model for heat and fluid flow through porous media. The present model has been validated against experimental data available in the scientific literature for two different problems, steady-state free convection in a porous annulus and transient natural convection in a porous cylinder, showing an excellent agreement. Findings – For vertically divided half porous cavities, with Rayleigh numbers equal to 3.4×106 for the 4:1 cavity and 3.4×105 for the 8:1 cavity, the numerical results show that transient oscillations tend to disappear in presence of cylindrical geometry, differently from what happens for rectangular one. The magnitude of this phenomenon increases with radii ratio; the porous layer also affects the stability of velocity and temperature fields, as oscillations tend to decrease in presence of a porous matrix with lower value of the Darcy number. Research limitations/implications – A proper analysis of partially porous annular cavities is fundamental for the correct estimation of Nusselt numbers, as the formulas provided for rectangular domains are not able to describe these problems. Practical implications – The proposed model represents a useful tool for the study of transient natural convection problems in porous and partially porous cylindrical and annular cavities, typical of many engineering applications. Moreover, a fully explicit scheme reduces the computational costs and ensures flexibility. Originality/value – This is the first time that a fully explicit finite element scheme is employed for the solution of transient natural convection in partially porous tall annular cavities.


Author(s):  
M.A. Mansour ◽  
Sameh Elsayed Ahmed ◽  
Ali J. Chamkha

Purpose This paper aims to investigate the entropy generation due to magnetohydrodynamic natural convection flow and heat transfer in a porous enclosure filled with Cu-water nanofluid in the presence of viscous dissipation effect. The left and right walls of the cavity are thermally insulated. There are heated and cold parts, and these are placed on the bottom and top wall, respectively, whereas the remaining parts are thermally insulated. Design/methodology/approach The finite volume method is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published woks is presented and is found to be in an excellent agreement. Findings The minimization of entropy generation and local heat transfer according to different values of the governing parameters are presented in details. It is found that the presence of magnetic field has negative effects on the local entropy generation because of heat transfer and the local total entropy generation. Also, the increase in the heated part length leads to a decrease in the local Nusselt number. Originality/value This problem is original, as it has not been considered previously.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yun Su ◽  
Miao Tian ◽  
Yunyi Wang ◽  
Xianghui Zhang ◽  
Jun Li

PurposeThe purpose of this paper is to study heat and steam transfer in a vertical air gap and improve thermal protective performance of protective clothing under thermal radiation and hot steam.Design/methodology/approachAn experiment-based model was introduced to analyze heat and moisture transfer in the vertical air gap between the protective clothing and human body. A developed test apparatus was used to simulate different air gap sizes (3, 6, 9, 12, 15, 18, 21 and 24 mm). The protective clothing with different air gap sizes was subjected to dry and wet heat exposures.FindingsThe increase of the air gap size reduced the heat and moisture transfer from the protective clothing to the skin surface under both heat exposures. The minimum air gap size for the initiation of natural convection in the dry heat exposure was between 6 and 9 mm, while the air gap size for the occurrence of natural convection was increased in the wet heat exposure. In addition, the steam mass flux presented a sharp decrease with the rising of the air gap size, followed by a stable state, mainly depending on the molecular diffusion and the convection mass transfer.Originality/valueThis research provides a better understanding of the optimum air gap under the protective clothing, which contributes to the design of optimum air gap size that provided higher thermal protection against dry and wet heat exposures.


Author(s):  
Pavel Karban ◽  
David Pánek ◽  
Ivo Doležel

Purpose A novel technique for control of complex physical processes based on the solution of their sufficiently accurate models is presented. The technique works with the model order reduction (MOR), which significantly accelerates the solution at a still acceptable uncertainty. Its advantages are illustrated with an example of induction brazing. Design/methodology/approach The complete mathematical model of the above heat treatment process is presented. Considering all relevant nonlinearities, the numerical model is reduced using the orthogonal decomposition and solved by the finite element method (FEM). It is cheap compared with classical FEM. Findings The proposed technique is applicable in a wide variety of linear and weakly nonlinear problems and exhibits a good degree of robustness and reliability. Research limitations/implications The quality of obtained results strongly depends on the temperature dependencies of material properties and degree of nonlinearities involved. In case of multiphysics problems characterized by low nonlinearities, the results of solved problems differ only negligibly from those solved on the full model, but the computation time is lower by two and more orders. Yet, however, application of the technique in problems with stronger nonlinearities was not fully evaluated. Practical implications The presented model and methodology of its solution may represent a basis for design of complex technologies connected with induction-based heat treatment of metal materials. Originality/value Proposal of a sophisticated methodology for solution of complex multiphysics problems established the MOR technology that significantly accelerates their solution at still acceptable errors.


Author(s):  
Sahin Yigit ◽  
Nilanjan Chakraborty

PurposeThis paper aims to numerically analyse natural convection of yield stress fluids in rectangular cross-sectional cylindrical annular enclosures. The laminar steady-state simulations have been conducted for a range of different values of normalised internal radius (ri/L1/8 to 16, whereLis the difference between outer and inner radii); aspect ratio (AR=H/Lfrom 1/8 to 8 whereHis the enclosure height); and nominal Rayleigh number (Rafrom 103to 106) for a single representative value of Prandtl number (Pris 500).Design/methodology/approachThe Bingham model has been used to mimic the yield stress fluid motion, and numerical simulations have been conducted for both constant wall temperature (CWT) and constant wall heat flux (CWHF) boundary conditions for the vertical side walls. The conservation equations of mass, momentum and energy have been solved in a coupled manner using the finite volume method where a second-order central differencing scheme is used for the diffusive terms and a second-order up-wind scheme is used for the convective terms. The well-known semi-implicit method for pressure-linked equations algorithm is used for the coupling of the pressure and velocity.FindingsIt is found that the mean Nusselt number based on the inner peripheryNu¯iincreases (decreases) with an increase inRa(Bn) due to augmented buoyancy (viscous) forces irrespective of the boundary condition. The ratio of convective to diffusive thermal transport increases with increasingri/Lfor both Newtonian (i.e.Bn= 0) and Bingham fluids regardless of the boundary condition. Moreover, the mean Nusselt numberNu¯inormalised by the corresponding Nusselt number due to pure conductive transport (i.e.Nu¯i/(Nu¯i)cond) shows a non-monotonic trend with increasingARin the CWT configuration for a given set of values ofRa,Pr,Lifor both Newtonian (i.e.Bn= 0) and Bingham fluids, whereasNu¯i/(Nu¯i)condincreases monotonically with increasingARin the CWHF configuration. The influences of convective thermal transport strengthen while thermal diffusive transport weakens with increasingAR, and these competing effects are responsible for the non-monotonicNu¯i/(Nu¯i)condvariation withARin the CWT configuration.Originality/valueDetailed scaling analysis is utilised to explain the observed influences ofRa,BN,ri/LandAR, which along with the simulation data has been used to propose correlations forNu¯i.


2003 ◽  
Vol 125 (6) ◽  
pp. 1027-1037 ◽  
Author(s):  
Marc Hodes ◽  
Kenneth A. Smith ◽  
Peter Griffith

A model is developed for the rate of salt deposition by natural convection from aqueous salt solutions onto a horizontal cylinder heated beyond the solubility temperature for the dissolved salt. The model accounts for the deposition rate at the salt layer-solution interface (SLSI) formed on the cylinder, but it does not account for deposition which may occur inside the porous salt layer (PSL). Dissolved salt is transported to the SLSI by molecular diffusion (with advection) and subsequently nucleates heterogeneously there. The model is applied to the experimental deposition rate data acquired by Hodes et al. (1998, 2002) at conditions pertinent to Supercritical Water Oxidation (SWCO). The ratio of the predicted deposition rate to the measured one ranges from roughly 0.5 to 2 indicating that deposition inside the PSL can be considerable.


Sign in / Sign up

Export Citation Format

Share Document