Toward understanding the topical structure of hospitality literature

2018 ◽  
Vol 30 (11) ◽  
pp. 3386-3411 ◽  
Author(s):  
Eunhye (Olivia) Park ◽  
Bongsug Chae ◽  
Junehee Kwon

Purpose This paper aims to identify the intellectual structure of four leading hospitality journals over 40 years by applying mixed-method approach, using both machine learning and traditional statistical analyses. Design/methodology/approach Abstracts from all 4,139 articles published in four top hospitality journals were analyzed using the structured topic modeling and inferential statistics. Topic correlation and community detection were applied to identify strengths of correlations and sub-groups of topics. Trend visualization and regression analysis were used to quantify the effects of the metadata (i.e. year of publication and journal) on topic proportions. Findings The authors found 50 topics and eight subgroups in the hospitality journals. Different evolutionary patterns in topic popularity were demonstrated, thereby providing the insights for popular research topics over time. The significant differences in topical proportions were found across the four leading hospitality journals, suggesting different foci in research topics in each journal. Research limitations/implications Combining machine learning techniques with traditional statistics demonstrated potential for discovering valuable insights from big text data in hospitality and tourism research contexts. The findings of this study may serve as a guide to understand the trends in the research field as well as the progress of specific areas or subfields. Originality/value It is the first attempt to apply topic modeling to academic publications and explore the effects of article metadata with the hospitality literature.

2015 ◽  
Vol 22 (5) ◽  
pp. 573-590 ◽  
Author(s):  
Mojtaba Maghrebi ◽  
Claude Sammut ◽  
S. Travis Waller

Purpose – The purpose of this paper is to study the implementation of machine learning (ML) techniques in order to automatically measure the feasibility of performing ready mixed concrete (RMC) dispatching jobs. Design/methodology/approach – Six ML techniques were selected and tested on data that was extracted from a developed simulation model and answered by a human expert. Findings – The results show that the performance of most of selected algorithms were the same and achieved an accuracy of around 80 per cent in terms of accuracy for the examined cases. Practical implications – This approach can be applied in practice to match experts’ decisions. Originality/value – In this paper the feasibility of handling complex concrete delivery problems by ML techniques is studied. Currently, most of the concrete mixing process is done by machines. However, RMC dispatching still relies on human resources to complete many tasks. In this paper the authors are addressing to reconstruct experts’ decisions as only practical solution.


2019 ◽  
Vol 119 (3) ◽  
pp. 676-696 ◽  
Author(s):  
Zhongyi Hu ◽  
Raymond Chiong ◽  
Ilung Pranata ◽  
Yukun Bao ◽  
Yuqing Lin

Purpose Malicious web domain identification is of significant importance to the security protection of internet users. With online credibility and performance data, the purpose of this paper to investigate the use of machine learning techniques for malicious web domain identification by considering the class imbalance issue (i.e. there are more benign web domains than malicious ones). Design/methodology/approach The authors propose an integrated resampling approach to handle class imbalance by combining the synthetic minority oversampling technique (SMOTE) and particle swarm optimisation (PSO), a population-based meta-heuristic algorithm. The authors use the SMOTE for oversampling and PSO for undersampling. Findings By applying eight well-known machine learning classifiers, the proposed integrated resampling approach is comprehensively examined using several imbalanced web domain data sets with different imbalance ratios. Compared to five other well-known resampling approaches, experimental results confirm that the proposed approach is highly effective. Practical implications This study not only inspires the practical use of online credibility and performance data for identifying malicious web domains but also provides an effective resampling approach for handling the class imbalance issue in the area of malicious web domain identification. Originality/value Online credibility and performance data are applied to build malicious web domain identification models using machine learning techniques. An integrated resampling approach is proposed to address the class imbalance issue. The performance of the proposed approach is confirmed based on real-world data sets with different imbalance ratios.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Antonio Hernández-Blanco ◽  
Boris Herrera-Flores ◽  
David Tomás ◽  
Borja Navarro-Colorado

Educational Data Mining (EDM) is a research field that focuses on the application of data mining, machine learning, and statistical methods to detect patterns in large collections of educational data. Different machine learning techniques have been applied in this field over the years, but it has been recently that Deep Learning has gained increasing attention in the educational domain. Deep Learning is a machine learning method based on neural network architectures with multiple layers of processing units, which has been successfully applied to a broad set of problems in the areas of image recognition and natural language processing. This paper surveys the research carried out in Deep Learning techniques applied to EDM, from its origins to the present day. The main goals of this study are to identify the EDM tasks that have benefited from Deep Learning and those that are pending to be explored, to describe the main datasets used, to provide an overview of the key concepts, main architectures, and configurations of Deep Learning and its applications to EDM, and to discuss current state-of-the-art and future directions on this area of research.


2018 ◽  
Vol 7 (S1) ◽  
pp. 82-86
Author(s):  
V. Sudha ◽  
S. Mohan ◽  
S. Arivalagan

Agriculture is the backbone of Indian economy. Big data are emerging précised and viable analytical tool in agricultural research field. This review paper facilitates the farmers in selecting the right crops and appropriate cropping pattern for a particular locality. A modern trend in the Agriculture domain has made people realize the importance of big data. It provides a methodology for facing challenges in agricultural production, by applying this Algorithm, using machine learning techniques. The different machine learning techniques survey is presented in this paper to realize enhanced monitory benefits in a particular area. A study of machine learning algorithms for big data Analytic is also done and presented in this paper.


Ad-click prediction is a learning problem that is highly related to the multi-billion-dollar ad- promoting the online advertising industry. As the number of internet users in India reached 525 million in 2019, online advertising companies are trying to influence internet usage users for promoting their business. Machine learning is a technique in which systems getting to act without any explicit programming. Currently, machine learning is pervasive today and we can use machine learning models in every research field. The accuracy of the ad-click prediction system impacts business revenue, so it is very important to build a prediction system with fewer false positives and false negatives.in this paper, we proposed an ad-click prediction system based on machine learning techniques. The dataset is taken from Kaggle. The dataset contains nine features. The goal of the model is to evaluate the probability of an online user to click on a given ad. We built a machine learning model based on these features. We applied a voting classifier on the dataset and achieved an accuracy of 98%.We used python language for implementation.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sagar Pande ◽  
Aditya Khamparia ◽  
Deepak Gupta

Purpose One of the important key components of health care–based system is a reliable intrusion detection system. Traditional techniques are not adequate to handle complex data. Also, the diversified intrusion techniques cannot meet current network requirements. Not only the data is getting increased but also the attacks are increasing very rapidly. Deep learning and machine learning techniques are very trending in the area of research in the area of network security. A lot of work has been done in this area by still evolutionary algorithms along with machine learning is very rarely explored. The purpose of this study is to provide novel deep learning framework for the detection of attacks. Design/methodology/approach In this paper, novel deep learning is the framework is proposed for the detection of attacks. Also, a comparison of machine learning and deep learning algorithms is provided. Findings The obtained results are more than 99% for both the data sets. Research limitations/implications The diversified intrusion techniques cannot meet current network requirements. Practical implications The data is getting increased but also the attacks are increasing very rapidly. Social implications Deep learning and machine learning techniques are very trending in the area of research in the area of network security. Originality/value Novel deep learning is the framework is proposed for the detection of attacks.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Apostolos Ampountolas ◽  
Mark P. Legg

Purpose This study aims to predict hotel demand through text analysis by investigating keyword series to increase demand predictions’ precision. To do so, this paper presents a framework for modeling hotel demand that incorporates machine learning techniques. Design/methodology/approach The empirical forecasting is conducted by introducing a segmented machine learning approach of leveraging hierarchical clustering tied to machine learning and deep learning techniques. These features allow the model to yield more precise estimates. This study evaluates an extensive range of social media–derived words with the most significant probability of gradually establishing an understanding of an optimal outcome. Analyzes were performed on a major hotel chain in an urban market setting within the USA. Findings The findings indicate that while traditional methods, being the naïve approach and ARIMA models, struggled with forecasting accuracy, segmented boosting methods (XGBoost) leveraging social media predict hotel occupancy with greater precision for all examined time horizons. Additionally, the segmented learning approach improved the forecasts’ stability and robustness while mitigating common overfitting issues within a highly dimensional data set. Research limitations/implications Incorporating social media into a segmented learning framework can augment the current generation of forecasting methods’ accuracy. Moreover, the segmented learning approach mitigates the negative effects of market shifts (e.g. COVID-19) that can reduce in-production forecasts’ life-cycles. The ability to be more robust to market deviations will allow hospitality firms to minimize development time. Originality/value The results are expected to generate insights by providing revenue managers with an instrument for predicting demand.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pankaj Kumar ◽  
Bhavna Bajpai ◽  
Deepak Omprakash Gupta ◽  
Dinesh C. Jain ◽  
S. Vimal

Purpose The purpose of this study/paper To focus on finding COVID-19 with the help of DarkCovidNet architecture on patient images. Design/methodology/approach We used machine learning techniques with convolutional neural network. Findings Detecting COVID-19 symptoms from patient CT scan images. Originality/value This paper contains a new architecture for detecting COVID-19 symptoms from patient computed tomography scan images.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vijaya Geeta Dharmavaram

Purpose Today, online shopping and online business has become a new norm especially in the current pandemic scenario. With more businesses running online, cyber criminals are coming up with different tactics to steal identity and sensitive information such as credit card and banking credentials either for personal monetary gain or to sell in the dark Web. One form of such attack that is seen in the recent times is formjacking attack. This paper aims to review the current scenario of formjacking attack and its modus operandi. The paper also provides certain counter measures that can be adopted by the users and website owners. Design/methodology/approach The paper mainly focuses on the modus operandi of formjacking attack to understand the severity of the problem. Based on the way the attack is carried out, some guidelines to be followed are provided. Later, a brief review of machine learning techniques is furnished to understand how it may help as secure defense mechanism. Findings Formjacking attacks are on a rise in the past two years, especially during the holiday season. Cyber criminals have been using smart tactics to carry out these attacks which are very difficult to detect. Machine learning techniques may prove to be effective in combating these attacks. Originality/value Formjacking attack is not just a concern of the customers who may lose their sensitive data, but the onus also lies on the companies itself to ensure they protect their customer’s data from theft. Not much research is found regarding formjacking attack, as it is relatively a new form of attack. The paper reviews this attack and provides some measure that can be followed. It also provides few guidelines which can be used for further research in devising a security tool to mitigate this problem.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Sung-Wook Hwang ◽  
Junji Sugiyama

AbstractThe remarkable developments in computer vision and machine learning have changed the methodologies of many scientific disciplines. They have also created a new research field in wood science called computer vision-based wood identification, which is making steady progress towards the goal of building automated wood identification systems to meet the needs of the wood industry and market. Nevertheless, computer vision-based wood identification is still only a small area in wood science and is still unfamiliar to many wood anatomists. To familiarize wood scientists with the artificial intelligence-assisted wood anatomy and engineering methods, we have reviewed the published mainstream studies that used or developed machine learning procedures. This review could help researchers understand computer vision and machine learning techniques for wood identification and choose appropriate techniques or strategies for their study objectives in wood science.


Sign in / Sign up

Export Citation Format

Share Document