Development of a computer-aided design software for smart garments

2017 ◽  
Vol 29 (6) ◽  
pp. 845-856 ◽  
Author(s):  
Sungmin Kim

Purpose The purpose of this paper is to develop a computer-aided design software for smart garments. Design/methodology/approach A circuit design software with graphical user interface and an automatic Arduino code generator has been developed. Findings Complex circuit design for smart garment can be performed using an intuitive graphical user interface. Sophisticated C codes for activating the smart garment can be generated without in-depth knowledge of C language and electronic devices. Research limitations/implications Circuit wiring is performed manually. Further work will be focused on the generation of an algorithm that can find the overlap-free design of complex circuit. Practical implications Smart garments with complex functions are expected to be designed more easily without in-depth knowledge of electronic circuits and computer programming. Social implications Researchers of smart garment will be able to concentrate on the actual function of smart garments rather than coding the complex C programs. Originality/value This is the first computer-aided smart garment design software that can not only design the circuit but also generate the computer codes.

2016 ◽  
Vol 823 ◽  
pp. 396-401
Author(s):  
Adrian Cuzmoş ◽  
Dorian Nedelcu ◽  
Constantin Viorel Câmpian ◽  
Cristian Fănică ◽  
Ana Maria Budai

The paper presents a method developed and used by the CCHAPT researchers for the graphic plotting of the index tests results for hydraulic turbines, the comparison of the efficiency curves resulted from testing to those obtained by the model transposition [1] i.e. the determination and comparison of the existing combinatory cam with that obtained from tests.The method presented in the paper was born from the need for processing and presenting the results of index tests within the shortest delay and eliminating the errors that might occur in the results plotting.


2020 ◽  
Vol 32 (5) ◽  
pp. 691-705
Author(s):  
Nazanin Ansari ◽  
Sybille Krzywinski

PurposeThis paper aims to introduce a process chain spanning from scanned data to computer-aided engineering and further required simulations up to the subsequent production. This approach has the potential to reduce production costs and accelerate the procedure.Design/methodology/approachA parametric computer-aided design (CAD) model of the flyer wearing a wingsuit is created enabling easy changes in its posture and the wingsuit geometry. The objective is to track the influence of geometry changes in a timely manner for following simulation scenarios.FindingsAt the final stage, the two-dimensional (2D) pattern cuts were derived from the developed three-dimensional (3D) wingsuit, and the results were compared with the conventional ones used in the first stages of the wingsuit development.Originality/valueProposing a virtual development process chain is challenging; apart from the fact that the CAD construction of a wingsuit flyer – in itself posing a complicated task – is required at a very early stage of the procedure.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0226322
Author(s):  
Nelson Massanobu Sakaguti ◽  
Mário Marques Fernandes ◽  
Luiz Eugênio Nigro Mazzilli ◽  
Juan Antonio Cobo Plana ◽  
Fernanda Capurucho Horta Bouchardet ◽  
...  

2005 ◽  
Vol 127 (12) ◽  
pp. 32-34
Author(s):  
Jean Thilmany

This article discusses that how mechanical engineers will pair their already-familiar computer-aided design software with not-so-familiar three-dimensional (3D) displays for true 3D design. This is in accordance to a number of vendors' intent on supplying the newfangled computer monitors, within the next two decades. Although some of the devices are already on the market, affordable 3D monitors and displays seem to be more than a decade away, according to one university professor at work on such a project. Widespread adoption is still hindered by factors such as cost, software availability, and lack of a mouse-like device needed to interact with what’s on screen. Over the past 25 years, mechanical engineers have witnessed evolutionary change in design methods-from pen and paper to two-dimensional software and now to 3-D computer-aided design. While software makers have stepped up with sleeker and faster modeling capabilities, visualization lags. Computer users two decades out will carry out all business, web surfing, and gaming on 3-D displays. That next generation may well find the very idea of 2-D monitors to be as dated as record albums seem to teenagers today.


2014 ◽  
Vol 20 (4) ◽  
pp. 270-279 ◽  
Author(s):  
Sameer C. Raghatate ◽  
Abhaykumar M. Kuthe ◽  
Tushar R. Deshmukh ◽  
Sandeep W. Dahake

Purpose – The main purpose of this paper is to report the successful treatment modality for patients suffering from arthritis of the metatarsophalangeal joint (MTPJ) of the foot which otherwise could not be treated through traditional surgeries. Design/methodology/approach – The unique capabilities of the computer-aided design and the rapid prototyping (RP) technology are used to develop the customized MTPJ implant (SamKu). Findings – This approach shows good results in the fabrication of the MTPJ implant. Postoperatively, the patient experienced normalcy in the movement of the MTPJ of the foot. Practical implications – Advanced technologies made it possible to fabricate the customized MTPJ implant (SamKu). The advantage of this approach is that the physical RP model assisted in designing the final metallic implant. It also helped in the surgical planning and the rehearsals. Originality/value – This case report illustrates the benefits of imaging/computer-aided manufacturing/RP to develop the customized implant and serve those patients who could not be treated in the traditional way. This is a pioneered attempt toward implementation of a customized implant for patients suffering from arthritis of the MTPJ.


Author(s):  
Sean Peel ◽  
Dominic Eggbeer ◽  
Hanna Burton ◽  
Hayley Hanson ◽  
Peter L Evans

This article compared the accuracy of producing patient-specific cranioplasty implants using four different approaches. Benchmark geometry was designed to represent a cranium and a defect added simulating a craniectomy. An ‘ideal’ contour reconstruction was calculated and compared against reconstructions resulting from the four approaches –‘conventional’, ‘semi-digital’, ‘digital – non-automated’ and ‘digital – semi-automated’. The ‘conventional’ approach relied on hand carving a reconstruction, turning this into a press tool, and pressing titanium sheet. This approach is common in the UK National Health Service. The ‘semi-digital’ approach removed the hand-carving element. Both of the ‘digital’ approaches utilised additive manufacturing to produce the end-use implant. The geometries were designed using a non-specialised computer-aided design software and a semi-automated cranioplasty implant-specific computer-aided design software. It was found that all plates were clinically acceptable and that the digitally designed and additive manufacturing plates were as accurate as the conventional implants. There were no significant differences between the additive manufacturing plates designed using non-specialised computer-aided design software and those designed using the semi-automated tool. The semi-automated software and additive manufacturing production process were capable of producing cranioplasty implants of similar accuracy to multi-purpose software and additive manufacturing, and both were more accurate than handmade implants. The difference was not of clinical significance, demonstrating that the accuracy of additive manufacturing cranioplasty implants meets current best practice.


Author(s):  
Chi-Cheng Chu ◽  
Rajit Gadh

In this paper, a series of interface tests on interaction approach for the generation of geometric shape designs via multi-sensory user interface of a Virtual Reality (VR) based System is presented. The goal of these interface tests is to identify an effective user interface for VR based Computer-Aided Design (CAD) system. The intuitiveness of the VR based interaction approach arises from the use of natural hand movements/gestures, and voice commands that emulate the way in which human beings discuss geometric shapes in reality. The focus of this paper is on determining a set of effective interaction approaches by using the combinations of auditory, tactile, and visual sensory modalities to accomplish typical CAD tasks. In order to evaluate the proposed interaction approach, a prototypical VR-CAD system is implemented. A series of interface tests were performed on the prototypical systems to determine the relative efficiency of a set of potential interaction approach with respect to specific fundamental design tasks. The interface test and its results are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document