Development of a 3D printing method for the textile hybrid structure

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jihye Deborah Kang ◽  
Sungmin Kim

PurposeThe development of a 3D printing method for the textile hybrid structure that can both be a solution to the conventional drawbacks of 3D printing method and a step forward to a garment making industry.Design/methodology/approachA novel 3D printing method using the textile hybrid structure was developed to generate 3D object without support structures.Findings3D printing of curved panels without support structure was possible by using fabric tension and residual stress.Practical implicationsGarment panels can be 3D printed without support structures by utilizing the idea of textile hybrid structure. Garment panels are expected to be modelled and printed easily using the Garment Panel Printer (GPP) software developed in this study.Social implications3D printing method developed in the study is expected to reduce the time and material previously needed for support structures.Originality/valueComprehensive preparatory experiments were made to determine the design parameters. Various experiments were designed to test the feasibility and validity of proposed method.

2017 ◽  
Vol 33 (6) ◽  
pp. 4-6

Purpose This paper aims to review the latest management developments across the globe and pinpoint practical implications from cutting-edge research and case studies. Design/methodology/approach This briefing is prepared by an independent writer who adds their own impartial comments and places the articles in context. Findings 3D printing is big business, and it is growing fast. While there is some adoption of the technology in industry, the vast majority is occurring at home, with users. These user entrepreneurs are carving their own path into business, providing products and services to a growing customer base in a way that large incumbent organizations cannot. The innovative and adaptable nature of these user entrepreneurs perfectly fits the 3D printing market, but with such a diverse marketplace and large number of competitors, a competitive advantage is being sought. Holzmann et al. (2017) look at the use of business models to ascertain whether they can provide this desired advantage in the 3D printing user market. Practical implications The paper provides strategic insights and practical thinking that have influenced some of the world’s leading organizations. Originality/value The briefing saves busy executives and researchers hours of reading time by selecting only the very best, most pertinent information and presenting it in a condensed and easy-to-digest format.


2018 ◽  
Vol 90 (2) ◽  
pp. 237-245
Author(s):  
Guo Zhong ◽  
Jun Huang ◽  
Mingxu Yi

Purpose The purpose of this paper is to reduce the acoustic noise of helicopter ducted tail rotor. Design/methodology/approach To predict the noise accurately, a thin-body boundary element method (BEM)/Ffowcs Williams–Hawkings method is developed in this paper. It is a hybrid method combining the BEM with computational aeroacoustics and can be used efficiently to predict the propagation of sound wave in the duct. Findings Compared with the experimental results, the proposed method of acoustic noise is rather desirable. Practical implications Then several geometry parameters are modified to investigate the noise reduction of ducted tail rotor by using the numerical prediction method. Originality/value The aerodynamic and acoustic performance of different modification tasks is discussed. These results demonstrate the validity of design parameters modification of ducted tail rotor in acoustic noise reduction.


2020 ◽  
Vol 26 (4) ◽  
pp. 699-706
Author(s):  
Feras Korkees ◽  
James Allenby ◽  
Peter Dorrington

Purpose 3D printing of composites has a high degree of design freedom, which allows for the manufacture of complex shapes that cannot be achieved with conventional manufacturing processes. This paper aims to assess the design variables that might affect the mechanical properties of 3D-printed fibre-reinforced composites. Design/methodology/approach Markforged Mark-Two printers were used to manufacture samples using nylon 6 and carbon fibres. The effect of fibre volume fraction, fibre layer location and fibre orientation has been studied using three-point flexural testing. Findings The flexural strength and stiffness of the 3D-printed composites increased with increasing the fibre volume fraction. The flexural properties were altered by the position of the fibre layers. The highest strength and stiffness were observed with the reinforcement evenly distributed about the neutral axis of the sample. Moreover, unidirectional fibres provided the best flexural performance compared to the other orientations. 3D printed composites also showed various failure modes under bending loads. Originality/value Despite multiple studies available on 3D-printed composites, there does not seem to be a clear understanding and consensus on how the location of the fibre layers can affect the mechanical properties and printing versatility. Therefore, this study covered this design parameter and evaluated different locations in terms of mechanical properties and printing characteristics. This is to draw final conclusions on how 3D printing may be used to manufacture cost-effective, high-quality parts with excellent mechanical performance.


2020 ◽  
Vol 26 (1) ◽  
pp. 134-144 ◽  
Author(s):  
Diana Popescu ◽  
Aurelian Zapciu ◽  
Cristian Tarba ◽  
Dan Laptoiu

Purpose This paper aims to propose a new solution for producing customized three-dimensional (3D)-printed flat-shaped splints, which are then thermoformed to fit the patient’s hand. The splint design process is automated and is available to clinicians through an online application. Design/methodology/approach Patient anthropometric data measured by clinicians are associated with variables of parametric 3D splint models. Once these variables are input by clinicians in the online app, customized stereo lithography (STL) files for both splint and half mold, in the case of the bi-material splint, are automatically generated and become available for download. Bi-materials splints are produced by a hybrid manufacturing process involving 3D printing and overmolding. Findings This approach eliminates the need for 3D CAD-proficient clinicians, allows fast generation of customized splints, generates two-dimensional (2D) drawings of splints for verifying shape and dimensions before 3D printing and generates the STL files. Automation reduces splint design time and cost, while manufacturing time is diminished by 3D printing the splint in a flat position. Practical implications The app could be used in clinical practice. It meets the demands of mass customization using 3D printing in a field where individualization is mandatory. The solution is scalable – it can be extended to other splint designs or to other limbs. 3D-printed tailored splints can offer improved wearing comfort and aesthetic appearance, while maintaining hand immobilization, allowing visually controlled follow-up for edema and rapidly observing the need for revision if necessary. Originality/value An online application was developed for uploading patient measurements and downloading 2D drawings and STL files of customized splints. Different models of splints can be designed and included in the database as alternative variants. A method for producing bi-materials flat splints combining soft and rigid polymers represents another novelty of the research.


Author(s):  
Ewa Napieralska-Juszczak ◽  
Piotr Napieralski ◽  
Krzysztof Komeza ◽  
Youcef Zeroukhi

Purpose The purpose of this paper is to determine the physical design parameters that influence the total resistance of a twisted conductor (cable). One of the physical parameters characterizing this type of structures is the uneven distribution of resistivity due to hardening, which is the result of stress exerted on the wires during the manufacturing process. Design/methodology/approach The authors have developed a method to take into account the effect of localized hardening on the inhomogeneous distribution of electrical conductivity in the distorted structures of the conductor. To achieve this goal, the authors have implemented a mechanical-electrical simulation method. The resistance characteristics have been measured as a function of mechanical stress. Findings As demonstrated by the results of measurements conducted on various samples and with various cable design parameters, the resistance of a given material (copper or aluminum), expressed as a function of stress, does not depend on the type of force applied. Therefore, the same characteristics may be applied to various cable designs. Practical implications The method presented in this paper enables more detailed investigation of the influence of particular design parameters on the total resistance of a cable. It also provides the ability to determine optimal settings of design parameters. Originality/value The approach is distinct from similar studies because it takes into account the deformed geometry of the conductor and the uneven distribution of the resistivity within a filament. In the literature, it is sometimes stated that the distribution of resistivity in a compacted cable is uneven, but its measurement is deemed impossible. This paper provides a method for determining such a distribution.


2018 ◽  
Vol 90 (2) ◽  
pp. 390-397
Author(s):  
Noorfazreena Kamaruddin ◽  
Jonathan Potts ◽  
William Crowther

Purpose The purpose of this paper is to examine geometrical design influence of various types of flying discs on their flight performance from the aerodynamics perspective. Design/methodology/approach The lift, drag and moment coefficients of the discs were measured experimentally using a wind tunnel. Three types of golf discs and four sets of simpler parametric discs were studied to analyze and isolate the effect of design factors on these aerodynamic characteristics. Full six degree-of-freedom simulations of the discs were performed to visualize their flight trajectories and attitudes. These simulations, combined with the experimental data, provide details on the well-known “S-shaped” ground-path traced by a flying disc. Findings This paper reveals two key parameters to evaluate the flight performance of a disc: its coefficient of lift-to-drag ratio (CL/CD) and, more importantly, its coefficient of pitching moment (CM). The latter influences the tendency of the disc to yaw from its intended path, and the former influences its throwing distance. Practical implications The work suggests that to optimize the flight performance of a disc, the magnitudes and gradient of its CM should be minimized and its trim-point shifted from origin, while its CL/CD should be maximized with a flatter peak. Originality/value In this paper, the design parameters and the aerodynamic characteristics of various types of flying discs are analysed, compared and discussed in depth. Recommendations of design improvements to enhance the performance of any flying disc are offered as well.


2019 ◽  
Vol 25 (1) ◽  
pp. 13-21
Author(s):  
Justin Favero ◽  
Sofiane Belhabib ◽  
Sofiane Guessasma ◽  
Hedi Nouri

Purpose Assembling items to achieve bigger parts seems to be the solution to counterbalance the dimension limits of 3D printing. This work aims to propose an approach to achieve optimal assembling. Design/methodology/approach Acrylonitrile butadiene styrene polymer samples were printed using fused deposition modelling (FDM). These samples were assembled and the precise contribution of interfacial shearing and tension was measured using simple tensile experiments. Findings The results achieved show the correlation between the printing orientation and the assembling angle. It could be proved that rupture by an interfacial decohesion mechanism of glued parts can be avoided by simple adaptation of the assembling junction. Practical implications Design of large parts using FDM is no more a limitation if assembling configurations are adapted based on the knowledge gained about the interfacial phenomena occurring at the junction position. Originality/value The unbalanced contribution of shearing and tension at the interface defines new assembling profiles that exclude flat junctions.


2016 ◽  
Vol 22 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Xiaoyong Tian ◽  
Ming Yin ◽  
Dichen Li

Purpose Artificial electromagnetic (EM) medium and devices are designed with integrated micro- and macro-structures depending on the EM transmittance performance, which is difficult to fabricate by the conventional processes. Three-dimensional (3D) printing provides a new solution for the delicate artificial EM medium. This paper aims to first review the applications of 3D printing in the fabrication of EM medium briefly, mainly focusing on photonic crystals, metamaterials and gradient index (GRIN) devices. Then, a new design and fabrication strategy is proposed for the EM medium based on the 3D printing process, which was verified by the implementation of a 3D 90o Eaton lens based on GRIN metamaterials. Design/methodology/approach A new design and manufacturing strategy driven by the physical (EM transmittance) performance is proposed to illustrate the realization procedures of EM medium based device with controllable micro- and macro-structures. Stereolithography-based 3D printing process is used to obtain the designed EM device, an GRIN Eaton lens. The EM transmittance of the Eaton lens was validated experimentally and by simulation. Findings A 3D 90o Eaton lens was realized based on GRIN metamaterials structure according to the proposed design and manufacturing strategy, which had the broadband (12-18 GHz) and low loss characteristic. The feasibility of 3D printing for the artificial EM medium and GRIN devices has been verified for the further real applications in the industries. Originality/value The applications of 3D printing in artificial EM medium and devices were systematically reviewed. A new design strategy driven by physical performance for the EM device was proposed and validated by the firstly 3D printed 3D Eaton lens.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yaffa Moskovich

PurposeThis article analyzes a kibbutz factory and seeks to understand its unique hybrid structure following privatization, comparing it with that of other kibbutz industries in Israeli society.Design/methodology/approachThe research used qualitative investigation, including interviews and document analysis practice.FindingsThe study describes hybrid model that is based on conflicting logic, as the kibbutz industry contains both communal and familial principles and bureaucratic and business features. This case study succeeded in striking a balance between the two conflicting logics through sound managerial policy adapted for the sake of communal interests.Practical implicationsThis typology can be applied to other business organizations that underwent organizational changes as well.Originality/valueThe authors developed an alternative hybrid organization typology capable of describing new trends in kibbutz industry.


2018 ◽  
Vol 90 (4) ◽  
pp. 699-710
Author(s):  
Adam Dacko ◽  
Pawel Borkowski ◽  
Lukasz Pawel Lindstedt ◽  
Cezary Rzymkowski ◽  
Miroslaw Rodzewicz

Purpose This paper aims to present the assumptions, analysis and sample results of numerical modeling and analysis of dynamic events encountered in emergency cases during deployment of parachute rescue system (PRS) and hard landing of a small gyrocopter. The optimal design requires knowledge of structural loads and structural response – the information obtained often from experiment. Numerical simulation is presented as an alternative tool for estimating these data. Design/methodology/approach Structural analyses were performed using MSC.Nastran. Multibody simulations were done using MADYMO system. Findings Initial design parameters were evaluated and verified in numerical simulations. Some of the resulting conclusions were proven during the test flights. Practical implications Some chosen results of simulation of dynamic problems are presented. They can be useful as reference values for similar cases for light aircraft analysis. Originality/value The paper presents an alternative way of assessing structural response parameters in the case of emergency dynamic events of usage of PRS. The results can be used in other projects.


Sign in / Sign up

Export Citation Format

Share Document