Design and analysis of grid-connected sustainable urban residential energy systems

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Deepak Kumar ◽  
Tavishi Tewary

Purpose Earlier most of the research groups have designed and developed hybrid renewable energy system models with technological, scientific and industrial advancement for the energy systems, but slight attention has been paid towards the grid-connected sustainable urban residential energy systems (SUReS) for metropolitan cities. The current research wishes to design, model and analyze grid-connected energy system for residential applications for sustainable urban residential energy system. The works aims to explore the potential of the augmented energy system for grid-connected energy system. Design/methodology/approach The proposed grid-connected SUReS are validated for a sample location at New Delhi (India) with a hybrid optimization model for electric renewable (HOMER) software to define and understand the various load profile. It presents the sensitivity analysis approach to validate the design of the proposed energy system. Findings The obtained results reports the key barriers, proposed model and scenarios for sustainable urban energy system development. Research limitations/implications Similar approaches can be replicated to design and develop an independent, self-sustainable cleaner and environmental-friendly energy system in the future scenario for the extension of complex grid infrastructures. Practical implications It will assist the stakeholder in solving the complex urban sustainability issues raised due to the shortage of energy. Social implications It will offer a clean and environment friendly sustainable energy resources with reduced carbon emissions. It will benefit sustainable energy resources with a mix of challenges and opportunities, to suggest an approach for implementation of efficient energy policies to optimize the existing and forthcoming energy systems. Originality/value The current research offers a design and model to analyze grid-connected energy system sustainable urban residential applications. It explores the potential of the augmented energy system. The proposed model are validated for a sample location with HOMER simulation software to define and understand various scenarios of the multiple load profile. The work presents the sensitivity analysis approach to validate the proposed energy system.

2019 ◽  
Vol 11 (18) ◽  
pp. 4996
Author(s):  
Dariusz Pieńkowski ◽  
Wojciech Zbaraszewski

The concept of an autarky has a long history and meaning related to its negation and unpopularity. In liberal schools of economics, autarky is usually considered from the perspectives of economic trade protectionism, closed economies, and threats to welfare. Nevertheless, the concept of autarky has gained a new meaning, understood as the local utilization of renewable energy resources from the perspective of their inter- and intragenerational distribution. Local action is shaped by the global perspective. This research consists of three steps. First, a model of energy autarky has been offered based on the system theory. The model shows the variety of the structures and features of energy systems offered in today’s debates on energy autarky. Second, the key postulates of sustainable development have been presented to define an autarkical sustainable energy system. Finally, the concept of bioenergy villages in Germany has been presented to illustrate the approach to energy autarky. The research shows that the concept of autarky and single solutions, such as the use of renewable resources, are not themselves a success from the perspective of sustainable development; this misunderstanding is well illustrated by the evolution of the German concept of bioenergy villages into smart villages.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7958
Author(s):  
Els van der Roest ◽  
Stijn Beernink ◽  
Niels Hartog ◽  
Jan Peter van der Hoek ◽  
Martin Bloemendal

In the energy transition, multi-energy systems are crucial to reduce the temporal, spatial and functional mismatch between sustainable energy supply and demand. Technologies as power-to-heat (PtH) allow flexible and effective utilisation of available surplus green electricity when integrated with seasonal heat storage options. However, insights and methods for integration of PtH and seasonal heat storage in multi-energy systems are lacking. Therefore, in this study, we developed methods for improved integration and control of a high temperature aquifer thermal energy storage (HT-ATES) system within a decentralized multi-energy system. To this end, we expanded and integrated a multi-energy system model with a numerical hydro-thermal model to dynamically simulate the functioning of several HT-ATES system designs for a case study of a neighbourhood of 2000 houses. Results show that the integration of HT-ATES with PtH allows 100% provision of the yearly heat demand, with a maximum 25% smaller heat pump than without HT-ATES. Success of the system is partly caused by the developed mode of operation whereby the heat pump lowers the threshold temperature of the HT-ATES, as this increases HT-ATES performance and decreases the overall costs of heat production. Overall, this study shows that the integration of HT-ATES in a multi-energy system is suitable to match annual heat demand and supply, and to increase local sustainable energy use.


2014 ◽  
Vol 9 (2) ◽  
pp. 122-145 ◽  
Author(s):  
Mauro Sarrica ◽  
Sonia Brondi ◽  
Paolo Cottone

This article examines the contents of the representations of sustainable energy in Italy from 2009 to 2011. In particular it explores the representations of energy, energy systems, and users. The article's starting point was the assumption that critical points may change the relationship between communities and the represented issues, and that new representations may be dialogically elaborated following relevant societal events. Political debates and newspaper articles dealing with sustainable energy were subjected to content analyses. Results show that the representations bear witness to the prevalence of economic and strategic approaches and a view of citizens whereby, even when involved in decentralized systems, they are required to stay passive. Alternative contents seem not to challenge the hegemonic view of energy. A clear trend toward sustainability is lacking, suggesting the absence of a continuing motivation to look at energy taking into account the civic growth of the population.


Consumption of fossil fuel and its effect on the environment has become a major universal problem. It is therefore necessary to use renewable energy resources (RES) such as solar, wind, etc. to decrease dependency on conventional energy resources. Currently, solar rooftop PV hybrid energy systems are becoming popular to overcome with the disadvantages of conventional energy sources. This paper presents a simulation-based strategy with the help of HOMER software to control the optimum utilization of renewable hybrid energy system for private buildings where it helps to maximize the building’s renewable power ratio and minimizing complete net current costs and CO2 emissions so that it’s a viable solution to address to the power shortage and Greenhouse gas emissions. Finally, manual calculations measured with net-meter are being validated with HOMER software and the results are more accurate with a variation of 1%


Author(s):  
Anna-Riikka Kojonsaari ◽  
Jenny Palm

AbstractNew decentralized energy-generation technologies have turned economies of scale upside down while becoming more economically viable. At the same time, the increased penetration of information technologies has led to new opportunities to manage infrastructure in a less hierarchical, more flexible way. Together with citizen demands for control over energy, these two converging trends has put energy communities (ECs) on the agenda, potentially advancing the transition towards more sustainable energy systems, despite hindrances encountered on the way. This paper presents a case study of the planning process of a sustainable city district in Sweden, using participatory observations and interviews conducted with included stakeholders. We analyse how the included stakeholders has reasoned about establishing a sustainable energy system in the area, including a microgrid. The discussions on a microgrid comprised two parallel discourses, coexisting but seldomly explicitly confronted. The distribution system operator in the area promoted a distributed energy system (DES) solution, while the property developers opted for a microgrid organized more as a citizen energy community (CEC). We discuss why the CEC proponents so far has lost the battle of creating a community owned smart grid. We conclude that the different models, a DES and a CEC, comprise different values and an increased focus on energy communities could shift the transition pathway towards a more decentralized system involving other prioritise than just economical.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 297-302 ◽  
Author(s):  
Sally M. Benson ◽  
Franklin M. Orr

AbstractA sustainable global energy system requires a transition away from energy sources with high greenhouse emissions. Vast energy resources are available to meet our needs, and technology pathways for making this transition exist. Lowering the cost and increasing the reliability and quality of energy from sustainable energy sources will facilitate this transition. Changing the world's energy systems is a huge challenge, but it is one that can be undertaken now with improvements in energy efficiency and with continuing deployment of a variety of technologies. Numerous opportunities exist for research in material sciences to contribute to this global-scale challenge.


2019 ◽  
Vol 42 (1) ◽  
pp. 68-101 ◽  
Author(s):  
Vahid Kayvanfar ◽  
S.M. Moattar Husseini ◽  
Zhang NengSheng ◽  
Behrooz Karimi ◽  
Mohsen S. Sajadieh

PurposeThis paper aims to optimize the interactions of businesses located within industrial clusters (ICs) by using a supply-demand hub in ICs (SDHIC) as a conjoint provider of logistics and depository facilities for small- and medium-sized enterprises (SMEs) as producers, where all of these interactions are under supervision of a third-party logistics provider (3PL).Design/methodology/approachTo evaluate the values of SDHIC, three mathematical models are proposed, optimally solved via GAMS and then compared. Also, a “linear relaxation-based heuristic” procedure is proposed to yield a feasible initial solution within a significant shorter computational time. To illustrate the values of SDHIC, comprehensive calculations over a case study and generated sets of instances are conducted, including several sensitivity analysis.FindingsThe experimental results demonstrate the efficiency of SDHIC for SMEs via combining batches and integrating the holding space of inventories, while the outcomes of the case study are aligned with those obtained from random sample examples, which confirms the trueness of used parameters and reveals the applicability of using SDHIC in real world. Finally, several interesting managerial implications for practitioners are extracted and presented.Practical implicationsSome of the managerial and practical implications are optimizing interactions of businesses involved in a supply chain of an IC containing some customers, suppliers and manufacturers and rectifying the present noteworthy gaps pertaining to the previously published research via using real assumptions and merging upstream and downstream of the supply chain through centralizing on storage of raw materials (supply echelon) and finished products (demand echelon) at the same place simultaneously to challenge a classic concept in which supply and demand echelons were being separately planned regarding their inventory management and logistics activities and showing the positive consequences of such challenge, showing the performance improvement of the proposed model compared to the classic model, by increasing the storing cost of raw materials and finished products, considering some disadvantages of using SDHIC and showing the usefulness of SDHIC in total, presenting some applied findings according to the obtained results of sensitivity analysis.Originality/valueThe key contributions of this paper to the literature are suggesting a new applied mathematical methodology to the supply chain (SC) of ICs by means of a conjoint provider of warehousing activities called SDHIC, comparing the new proposed model with the two classic ones and showing the proposed model’s dominancy, showing the helpful outcomes of collaborating 3PL with the SMEs in a cluster, proposing a “linear relaxation-based heuristic” procedure to yield a feasible initial solution within a significant shorter computational time and minimizing total supply chain costs of such IC by optimum application of facilities, lands and labor.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2520 ◽  
Author(s):  
Francesco Calise ◽  
Mário Costa ◽  
Qiuwang Wang ◽  
Xiliang Zhang ◽  
Neven Duić

EU energy policy is more and more promoting a resilient, efficient and sustainable energy system. Several agreements have been signed in the last few months that set ambitious goals in terms of energy efficiency and emission reductions and to reduce the energy consumption in buildings. These actions are expected to fulfill the goals negotiated at the Paris Agreement in 2015. The successful development of this ambitious energy policy needs to be supported by scientific knowledge: a huge effort must be made in order to develop more efficient energy conversion technologies based both on renewables and fossil fuels. Similarly, researchers are also expected to work on the integration of conventional and novel systems, also taking into account the needs for the management of the novel energy systems in terms of energy storage and devices management. Therefore, a multi-disciplinary approach is required in order to achieve these goals. To ensure that the scientists belonging to the different disciplines are aware of the scientific progress in the other research areas, specific Conferences are periodically organized. One of the most popular conferences in this area is the Sustainable Development of Energy, Water and Environment Systems (SDEWES) Series Conference. The 12th Sustainable Development of Energy, Water and Environment Systems Conference was recently held in Dubrovnik, Croatia. The present Special Issue of Energies, specifically dedicated to the 12th SDEWES Conference, is focused on five main fields: energy policy and energy efficiency in smart energy systems, polygeneration and district heating, advanced combustion techniques and fuels, biomass and building efficiency.


Sign in / Sign up

Export Citation Format

Share Document