scholarly journals Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7958
Author(s):  
Els van der Roest ◽  
Stijn Beernink ◽  
Niels Hartog ◽  
Jan Peter van der Hoek ◽  
Martin Bloemendal

In the energy transition, multi-energy systems are crucial to reduce the temporal, spatial and functional mismatch between sustainable energy supply and demand. Technologies as power-to-heat (PtH) allow flexible and effective utilisation of available surplus green electricity when integrated with seasonal heat storage options. However, insights and methods for integration of PtH and seasonal heat storage in multi-energy systems are lacking. Therefore, in this study, we developed methods for improved integration and control of a high temperature aquifer thermal energy storage (HT-ATES) system within a decentralized multi-energy system. To this end, we expanded and integrated a multi-energy system model with a numerical hydro-thermal model to dynamically simulate the functioning of several HT-ATES system designs for a case study of a neighbourhood of 2000 houses. Results show that the integration of HT-ATES with PtH allows 100% provision of the yearly heat demand, with a maximum 25% smaller heat pump than without HT-ATES. Success of the system is partly caused by the developed mode of operation whereby the heat pump lowers the threshold temperature of the HT-ATES, as this increases HT-ATES performance and decreases the overall costs of heat production. Overall, this study shows that the integration of HT-ATES in a multi-energy system is suitable to match annual heat demand and supply, and to increase local sustainable energy use.

Author(s):  
Luigi Bottecchia ◽  
Pietro Lubello ◽  
Pietro Zambelli ◽  
Carlo Carcasci ◽  
Lukas Kranzl

Energy system modelling is an essential practice to assist a set of heterogeneous stakeholders in the process of defining an effective and efficient energy transition. From the analysis of a set of open source energy system models, it has emerged that most models employ an approach directed at finding the optimal solution for a given set of constraints. On the contrary, a simulation model is a representation of a system that is used to reproduce and understand its behaviour under given conditions, without seeking an optimal solution. Given the lack of simulation models that are also fully open source, in this paper a new open source energy system model is presented. The developed tool, called Multi Energy Systems Simulator (MESS), is a modular, multi-node model that allows to investigate non optimal solutions by simulating the energy system. The model has been built having in mind urban level analyses. However, each node can represent larger regions allowing wider spatial scales to be be represented as well. MESS is capable of performing analysis on systems composed by multiple energy carriers (e.g. electricity, heat, fuels). In this work, the tool’s features will be presented by a comparison between MESS itself and an optimization model, in order to analyze and highlight the differences between the two approaches, the potentialities of a simulation tool and possible areas for further development.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2164
Author(s):  
Vahid Arabzadeh ◽  
Peter D. Lund

Heat demand dominates the final energy use in northern cities. This study examines how changes in heat demand may affect solutions for zero-emission energy systems, energy system flexibility with variable renewable electricity production, and the use of existing energy systems for deep decarbonization. Helsinki city (60 °N) in the year 2050 is used as a case for the analysis. The future district heating demand is estimated considering activity-driven factors such as population increase, raising the ambient temperature, and building energy efficiency improvements. The effect of the heat demand on energy system transition is investigated through two scenarios. The BIO-GAS scenario employs emission-free gas technologies, bio-boilers and heat pumps. The WIND scenario is based on large-scale wind power with power-to-heat conversion, heat pumps, and bio-boilers. The BIO-GAS scenario combined with a low heat demand profile (−12% from 2018 level) yields 16% lower yearly costs compared to a business-as-usual higher heat demand. In the WIND-scenario, improving the lower heat demand in 2050 could save the annual system 6–13% in terms of cost, depending on the scale of wind power.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2545 ◽  
Author(s):  
Alberto Fichera ◽  
Elisa Marrasso ◽  
Maurizio Sasso ◽  
Rosaria Volpe

Energy systems face great challenges from both the supply and demand sides. Strong efforts have been devoted to investigate technological solutions aiming at overcoming the problems of fossil fuel depletion and the environmental issues due to the carbon emissions. Hybrid (activated by both renewables and fossil fuels) distributed energy systems can be considered a very effective and promising technology to replace traditional centralized energy systems. As a most peculiar characteristic, they reduce the use of fossil sources and transmission and distribution losses along the main power grid and contribute to electric peak shaving and partial-loads losses reduction. As a direct consequence, the transition from centralized towards hybrid decentralized energy systems leads to a new role for citizens, shifting from a passive energy consumer to active prosumers able to produce energy and distribute energy. Such a complex system needs to be carefully modelled to account for the energy interactions with prosumers, local microgrids and main grids. Thus, the aim of this paper is to investigate the performance of a hybrid distributed energy system serving an urban community and modelled within the framework of agent-based theory. The model is of general validity and estimates (i) the layout of the links along which electricity is distributed among agents in the local microgrid, (ii) electricity exchanged among agents and (iii) electricity exported to the main power grid or imported from it. A scenario analysis has been conducted at varying the distance of connection among prosumers, the installed capacity in the area and the usage of links. The distributed energy system has been compared to a centralized energy system in which the electricity requests of the urban community are satisfied by taking electricity from the main grid. The comparison analysis is carried out from an energy, environmental and economic point of view by evaluating the primary energy saving, avoided carbon dioxide emissions and the simple payback period indices.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4753 ◽  
Author(s):  
Njomza Ibrahimi ◽  
Alemayehu Gebremedhin ◽  
Alketa Sahiti

In today’s energy system, the diffusion of renewable-based technologies is accelerating rapidly. Development of mechanisms that support the large-scale deployment of renewables towards global warming and climate change mitigation continues to remain an issue of utter importance. The most important challenges the energy system of Kosovo faces today is the difficulty to meet all the demand for electricity, low operating efficiency and high release of greenhouse gas emissions, but specifically a large source of carbon dioxide (CO2). Consequently, this influences not only the stability of the system but the society as a whole. This paper addresses several possibilities for designing an adaptable energy system in Kosovo with the ability to balance electricity supply and demand which will meet the requirements for a more efficient, reliable and secure system. A new way of energy generating through integration of new renewable and non-renewable technologies is developed using the EnergyPLAN model. The system is based on available technologies: existing hydro, wind, photovoltaic (PV), combined heat and power (CHP) and new solar thermal, heat pumps and biomass. The baseline scenario 2015 was expanded by four additional scenarios, two for the year 2030 and two for the year 2050. The contribution of renewable sources in the primary energy supply (PES) in the performed scenarios was 14.8%, 34.1%, 38.4%, 69.7% and 68.3% respectively. Further, a very important component of this paper is the investigation of integrating carbon capture and sequestration (CCS) technology in the coal-based power plant as part of the analysis in the second scenario for 2050. The shift to zero-carbon energy system in Kosovo requires additional research and assessment in order to identify the untapped potential of renewable sources. However, from the results obtained it can be concluded that the goal of a secure, competitive and sustainable energy system in Kosovo state which will meet its long-term energy needs can be certainly achieved.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3523 ◽  
Author(s):  
Haichao Wang ◽  
Giulia Di Pietro ◽  
Xiaozhou Wu ◽  
Risto Lahdelma ◽  
Vittorio Verda ◽  
...  

Renewable energy sources (RES) are playing an increasingly important role in energy markets around the world. It is necessary to evaluate the benefits from a higher level of RES integration with respect to a more active cross-border transmission system. In particular, this paper focuses on the sustainable energy transitions for Finland and Italy, since they have two extreme climate conditions in Europe and quite different profiles in terms of energy production and demand. We developed a comprehensive energy system model using EnergyPLAN with hourly resolution for a reference year for both countries. The models include electricity, heat and transportation sectors. According to the current base models, new scenarios reflecting an RES increase in total fuel consumption have been proposed. The future shares of renewables are based on each nation’s potential. The outcomes of the new scenarios support the future national plans, showing how decarburization in an energy system can occur in relation to the European Roadmap 2030 and 2050. In addition, possible power transmission between Italy and Finland were investigated according to the vision of an integrated European energy system with more efficient cross-border activities.


2020 ◽  
Vol 29 (4) ◽  
pp. 923-944 ◽  
Author(s):  
Stanley Blue ◽  
Elizabeth Shove ◽  
Peter Forman

There is broad agreement that the need to decarbonise and make better use of renewable and more intermittent sources of power will require increased flexibility in energy systems. However, organisations involved in the energy sector work with very different interpretations of what this might involve. In describing how the notion of flexibility is reified, commodified, and operationalised in sometimes disparate and sometimes connected ways, we show that matters of time and timing are routinely abstracted from the social practices and forms of provision on which the rhythms of supply and demand depend. We argue that these forms of abstraction have the ironic effect of stabilising interpretations of need and demand, and of limiting rather than enabling the emergence of new practices and patterns of demand alongside, and as part of, a radically decarbonised energy system. One way out of this impasse is to conceptualise flexibility as an emergent outcome of the sequencing and synchronisation of social practices. To do so requires a more integrated and historical account of how supply and demand constitute each other and how both are implicated in the temporal organisation of everyday life. It follows that efforts to promote flexibility in the energy sector need to look beyond systems of provision, price, technology, and demand-side management narrowly defined, and instead focus on the social rhythms and the timing of what people do.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5724
Author(s):  
Luigi Bottecchia ◽  
Pietro Lubello ◽  
Pietro Zambelli ◽  
Carlo Carcasci ◽  
Lukas Kranzl

Energy system modelling is an essential practice to assist a set of heterogeneous stakeholders in the process of defining an effective and efficient energy transition. From the analysis of a set of open-source energy system models, it emerged that most models employ an approach directed at finding the optimal solution for a given set of constraints. On the contrary, a simulation model is a representation of a system used to reproduce and understand its behaviour under given conditions without seeking an optimal solution. In this paper, a new open-source energy system model is presented. Multi Energy Systems Simulator (MESS) is a modular, multi-energy carrier, multi-node model that allows the investigation of non optimal solutions by simulating an energy system. The model was built for urban level analyses. However, each node can represent larger regions allowing wider spatial scales to be represented as well. In this work, the tool’s features are presented through a comparison between MESS and Calliope, a state of the art optimization model, to analyse and highlight the differences between the two approaches, the potentialities of a simulation tool and possible areas for further development. The two models produced coherent results, showing differences that were tracked down to the different approaches. Based on the comparison conducted, general conclusions were drawn on the potential of simulating energy systems in terms of a more realistic description of smaller energy systems, lower computational times and increased opportunity for participatory processes in planning urban energy systems.


2019 ◽  
Vol 11 (18) ◽  
pp. 4996
Author(s):  
Dariusz Pieńkowski ◽  
Wojciech Zbaraszewski

The concept of an autarky has a long history and meaning related to its negation and unpopularity. In liberal schools of economics, autarky is usually considered from the perspectives of economic trade protectionism, closed economies, and threats to welfare. Nevertheless, the concept of autarky has gained a new meaning, understood as the local utilization of renewable energy resources from the perspective of their inter- and intragenerational distribution. Local action is shaped by the global perspective. This research consists of three steps. First, a model of energy autarky has been offered based on the system theory. The model shows the variety of the structures and features of energy systems offered in today’s debates on energy autarky. Second, the key postulates of sustainable development have been presented to define an autarkical sustainable energy system. Finally, the concept of bioenergy villages in Germany has been presented to illustrate the approach to energy autarky. The research shows that the concept of autarky and single solutions, such as the use of renewable resources, are not themselves a success from the perspective of sustainable development; this misunderstanding is well illustrated by the evolution of the German concept of bioenergy villages into smart villages.


2021 ◽  
Author(s):  
Nicholas Martin ◽  
Cristina Madrid-López ◽  
Laura Talens-Peiró ◽  
Bryn Pickering

<p>A decarbonized, renewable energy system is generally assumed to represent a cleaner and more sustainable one. However, while they do promise day-to-day reductions in carbon emissions, many other environmental impacts could occur, and these are often overlooked. Indeed, in the two documents that form the EU Energy Union Strategy (COM/2015/080) the words ‘water’, ‘biodiversity’ or ‘raw materials’ do not appear. This ‘tunnel vision’ is often also adopted in current energy systems models, which do not generally provide a detailed analysis of all of the environmental impacts that accompany different energy scenarios. Ignoring the trade-offs between energy systems and other resources can result in misleading information and misguided policy making.</p><p>The environmental assessment module ENVIRO combines the bottom up, high resolution capabilities of life cycle assessment (LCA) with the hierarchical multi-scale upscaling capabilities of the Multi-Scale Integrated Assessment of Socioecosystem Metabolism (MuSIASEM) approach in an effort to address this gap. ENVIRO also takes the systemic trade-offs associated with the water-energy-food-(land-climate-etc.) nexus from MuSIASEM while considering the supply chain perspective of LCA. The module contains a built-in set of indicators that serve to assess the constraints that greenhouse gas (GHG) emissions, pollution, water use and raw material demands pose to renewable energy system scenarios. It can be used to assess the coherence between energy decarbonization targets and water or raw material targets; this can be extended to potentially any economic or political target that has a biophysical component.</p><p>In this work, we introduce the semantics and formalization aspects of ENVIRO, its integration with the energy system model Calliope, and the results of a first testing of the module in the assessment of decarbonization scenarios for the EU. The work is part of the research developed in the H2020 Project SENTINEL: Sustainable Energy Transition Laboratory (contract 837089).</p>


Sign in / Sign up

Export Citation Format

Share Document