scholarly journals Potential for waste to energy generation of municipal solid waste (MSW) in the Kumasi metropolis of Ghana

2020 ◽  
Vol 14 (6) ◽  
pp. 1315-1331 ◽  
Author(s):  
Eugene Amo-Asamoah ◽  
De-Graft Owusu-Manu ◽  
George Asumadu ◽  
Frank Ato Ghansah ◽  
David John Edwards

Purpose Globally, waste management has been a topical issue in the past few decades due to the continual increase in municipal solid waste (MSW) generation that is becoming difficult to handle with conventional waste management techniques. The situation is much more pronounced in economically developing countries where population growth rate and urbanisation are becoming uncontrollable. The purpose of this study was to assess the potential for waste to energy generation in the Kumasi metropolis, the second-largest city in Ghana. Design/methodology/approach To address the objectives of the study, a quantitative research approach, namely, the questionnaire was adopted. The data analysis was done using the statistical package for social sciences version 25, including both descriptive and inferential statistics to give an in-depth meaning to the responses from the participants. Findings The results showed that several factors hinder waste to energy technology in Ghana; key among them was high capital cost, high operational cost and lack of governmental support and policy framework. The results also revealed that 1 m3 of biogas generated from MSW in Kumasi could generate 36 MJ of energy, equivalent to 10 kW/h. Originality/value The unique contribution made by the paper is that it combines expert opinions, empirical data that included time series data and opinion of key actors in the waste management chain in assessing the potential for waste to energy generation in the Kumasi metropolis of Ghana.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
De-Graft Owusu-Manu ◽  
E. Amo-Asamoah ◽  
Frank Ato Ghansah ◽  
George Asumadu

Purpose Kumasi Metropolis, the second-largest city in Ghana is known to be bewildered with challenges relating to waste management. As a means of solving the waste management challenge, several suggestions are often made for the establishment of a waste-to-energy plant to manage the disposal of waste and generation of income. There have been no studies conducted to determine how economically viable such plants will be. This study aims to examine the economic viability of waste-to-energy generation in the Kumasi Metropolis to find out how economically viable such an approach will be. Design/methodology/approach To achieve this, a simple debt-equity ratio business model based on discounted cash flow technique was applied to estimate the internal rate of returns (IRR) as a measure of the economic viability and profitability of a modelled 50 MWH waste-energy generation plant in the Kumasi Metropolis. The analysis was performed using the RetScreen Expert Software. Findings The results show that the IRR and benefits cost ratio of the facility were 36% and 5.8%, respectively, indicating high levels of profitability and economic viability. The study concludes that waste-to-energy generation will be an economically viable venture in the Kumasi Metropolis. Practical implications It is, however, important for users of the findings of this study to take caution of the fact that the various assumptions although based on current knowledge and expert opinion may vary with time; therefore, the sensitive analysis on price and costs should always be considered. Practically, this study will contribute to solving the waste management situation in most cities, as well as generating revenue and helping close the energy deficit most developing countries are grabbling with. Originality/value The unique contribution of the study to knowledge is that it has professed an alternative analytical and methodological approach to measuring the financial viability of waste-to-energy plants in situations where there is none in the geographical jurisdiction of the proposed project.


2018 ◽  
Vol 29 (6) ◽  
pp. 1075-1092
Author(s):  
Bupe Getrude Mwanza ◽  
Charles Mbohwa ◽  
Arnesh Telukdarie

Purpose The purpose of this paper is to review the present municipal solid wastes (MSWs) management system, from an engineering management (EM) perspective, for the City of Kitwe while proposing a levers-driven sustainable municipal solid waste management (MSWM) model focussing on improving waste management (WM). Design/methodology/approach The research work involves four stages. First, a comprehensive review of literature is conducted on MSWM. Second, structured interviews are conducted with key experts in solid waste management in the City of Kitwe in order to enhance the knowledge inputs. Third, direct observations and an interview with a WM driver are conducted in order to understand; the collection, disposal and treatment options for MSWs. Lastly, a sustainable model for managing MSWs is proposed Findings The research findings indicate that the existing MSW system for the city is highly unsustainable and lacks EM methodologies. There are still a number of challenges in the management of MSWs which include: lack of proper collection and storage of MSWs; lack of an engineered landfill; lack of waste recovery and treatment systems; and lack of public education aimed at reducing and separating MSWs. Practical implications A correct and detailed database for waste generation, collection, treatment and disposal is needed for the City of Kitwe. The system is necessary for WM resources allocation as well as for planning sustainable WM projects. The proposed model has been developed based on the actual observations, data collection and analysis. Originality/value The research identifies a gap in the management of MSWs for the City of Kitwe. This work is original as no similar MSW model has been proposed globally and specific for a developing economy such as Africa.


2019 ◽  
Vol 90 ◽  
pp. 01007
Author(s):  
Farizal ◽  
Tammarar Ekky

This study determines the tipping fee of municipal solid waste in the city of Depok. Two methods used to determine the fee were the income and outcome approach, and the limited resource approach. Two conditions were assumed (i.e., waste management and landfill gas bioreactor availability). From the results, the ideal tipping fee was 97,704 IDR/tonne and the application of a landfill gas reactor could boost income, thus reduced the amount of the fee collected, especially in the early years of the landfill bioreactor in operation. The fees were 40,032 and 63,337 IDR/tonne for scenario 1 and 2, respectively.


2020 ◽  
Vol 16 (6) ◽  
pp. 917-948
Author(s):  
Kapil Dev Sharma ◽  
Siddharth Jain

Purpose Due to the increasing population and prosperity, the generation rate of municipal solid waste (MSW) has increased significantly, resulting in serious problems on public health and the environment. Every single person in the world is affected by the municipal solid waste management (MSWM) issue. MSWM is reaching a critical level in almost all areas of the world and seeking the development of MSW strategies for a sustainable environment. This paper aims to present the existing global status of MSW generation, composition, management and related problems. Design/methodology/approach A total of 59 developed and developing countries have been grouped based on their gross national income to compare the status of various MSWM technologies among them. A total of 19 selection criteria have been discussed to select appropriate MSWM technology(s) for a city/town, which affects their applicability, operational suitability and performance. All risks and challenges arising during the life cycle of the waste to energy (WtE) project have also been discussed. This paper also gives a comparative overview of different globally accepted MSWM technologies and the present market growth of all WtE technologies. Findings It was found that most developed countries have effectively implemented the solid waste management (SWM) hierarchy and are now focusing heavily on reducing, reusing and recycling of MSW. On the other hand, SWM has become very serious in low-income and low-middle-income countries because most of the MSW openly dumps and most countries are dependent on inadequate waste infrastructure and the informal sector. There are also some other major challenges related to effective waste policies, availability of funds, appropriate technology selection and adequacy of trained people. This study clears the picture of MSW generation, composition, management strategies and policies at the worldwide context. This manuscript could be valuable for all nations around the world where effective MSWM has not yet been implemented. Originality/value This study clears the picture of solid waste generation, composition, management strategies and policies at the worldwide context. This manuscript could be valuable for all nations around the world where effective MSWM has not yet been implemented. In this study, no data was generated. All supporting data were obtained from previously published papers in journals, the outcomes of the international conferences and published reports by government organizations.


2020 ◽  
Vol 12 (14) ◽  
pp. 5711
Author(s):  
Laith A. Hadidi ◽  
Ahmed Ghaithan ◽  
Awsan Mohammed ◽  
Khalaf Al-Ofi

The need for resilience and an agile waste management system in Saudi Arabia is vital to control safely the rapid growth of its municipal solid waste (MSW) with minimal environment toll. Similarly, the domestic energy production in Saudi Arabia is thriving and putting a tremendous pressure on its huge reserves of fossil oil. Waste to energy (WTE) plants provides a golden opportunity for Saudi Arabia; however, both challenges (MSW mitigation and energy production) are usually looked at in isolation. This paper at first explores the potential of expanding the WTE energy production in the eastern province in Saudi Arabia under two scenarios (complete mass burn with and without recycling). Secondly, this study analyzes the effect of 3Rs (reduce, reuse, recycle) practices implementation in a residential camp (11,000 population) to influence the behavior of the camp’s citizens to reduce their average waste (kg/capita). The results of the 3R-WTE framework show a potential may reach 254 Megawatt (MW) of electricity by year 2030. The 3R system implementation in the camp reduced MSW production from 5,625 tons to 3000 tons of household waste every year, which is considered lower than what the surrounding communities to be produced in the same area.


2019 ◽  
Vol 45 (4) ◽  
pp. 441-449
Author(s):  
Riham A. Mohsen ◽  
Bassim Abbassi ◽  
Animesh Dutta ◽  
David Gordon

More light is being shed continually on the environmental impacts of municipal solid waste due to the increasing amounts of waste generated and the related greenhouse gas emissions. Emissions from MSW account for 20% of Canadian greenhouse gas (GHG) emissions and accordingly, waste legislation in Ontario demands high waste recovery and a moving towards a circular economy. This study evaluates the current municipal solid waste management in the City of Guelph and assesses possible alternative scenarios based on the associated GHG emissions. Waste Reduction Model (WARM) that was developed by the US-EPA has been used to quantify the GHG emissions produced over the entire life cycle of the MSW management scenario. Sensitivity analysis was also conducted to investigate the influence of some scenarios on the overall GHG emissions. It has been found that one ton of landfilled waste generates approximately 0.39 ton of carbon dioxide equivalent (CO2Eq). It was also found that the current solid waste scenario has a saving of 36086 million ton of CO2Eq (MCO2Eq). However, the results showed that the scenario with enhanced waste-to-energy, reduction at source and recycling has resulted in a high avoided emissions (0.74 kg CO2Eq/kg MSW). The anaerobic Digestion scenario caused the lowest avoided emissions of 0.39 kg CO2Eq/kg MSW. The net avoided emissions for reduction at source scenario were found to be the same as that found by the current scenario (0.4 kg CO2Eq/kg MSW). The sensitivity analysis of both reduction at source and recycling rates show a linear inverse proportional relationship with total GHG emissions reduction.


Sign in / Sign up

Export Citation Format

Share Document