A novel face recognition in uncontrolled environment based on block 2D-CS-LBP features and deep residual network

2020 ◽  
Vol 13 (2) ◽  
pp. 207-221
Author(s):  
Minghua Wei

PurposeIn order to solve the problem that the performance of the existing local feature descriptors in uncontrolled environment is greatly affected by illumination, background, occlusion and other factors, we propose a novel face recognition algorithm in uncontrolled environment which combines the block central symmetry local binary pattern (CS-LBP) and deep residual network (DRN) model.Design/methodology/approachThe algorithm first extracts the block CSP-LBP features of the face image, then incorporates the extracted features into the DRN model, and gives the face recognition results by using a well-trained DRN model. The features obtained by the proposed algorithm have the characteristics of both local texture features and deep features that robust to illumination.FindingsCompared with the direct usage of the original image, the usage of local texture features of the image as the input of DRN model significantly improves the computation efficiency. Experimental results on the face datasets of FERET, YALE-B and CMU-PIE have shown that the recognition rate of the proposed algorithm is significantly higher than that of other compared algorithms.Originality/valueThe proposed algorithm fundamentally solves the problem of face identity recognition in uncontrolled environment, and it is particularly robust to the change of illumination, which proves its superiority.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhe-Zhou Yu ◽  
Yu-Hao Liu ◽  
Bin Li ◽  
Shu-Chao Pang ◽  
Cheng-Cheng Jia

In a real world application, we seldom get all images at one time. Considering this case, if a company hired an employee, all his images information needs to be recorded into the system; if we rerun the face recognition algorithm, it will be time consuming. To address this problem, In this paper, firstly, we proposed a novel subspace incremental method called incremental graph regularized nonnegative matrix factorization (IGNMF) algorithm which imposes manifold into incremental nonnegative matrix factorization algorithm (INMF); thus, our new algorithm is able to preserve the geometric structure in the data under incremental study framework; secondly, considering we always get many face images belonging to one person or many different people as a batch, we improved our IGNMF algorithms to Batch-IGNMF algorithms (B-IGNMF), which implements incremental study in batches. Experiments show that (1) the recognition rate of our IGNMF and B-IGNMF algorithms is close to GNMF algorithm while it runs faster than GNMF. (2) The running times of our IGNMF and B-IGNMF algorithms are close to INMF while the recognition rate outperforms INMF. (3) Comparing with other popular NMF-based face recognition incremental algorithms, our IGNMF and B-IGNMF also outperform then both the recognition rate and the running time.


2014 ◽  
Vol 644-650 ◽  
pp. 4080-4083
Author(s):  
Ye Cai Guo ◽  
Ling Hua Zhang

In order to overcome the defects that the face recognition rate can be greatly reduced in the existing uncontrolled environments, Bayesian robust coding for face recognition based on new dictionary was proposed. In this proposed algorithm, firstly a binary image is gained by gray threshold transformation and a more clear image without some isolated points can be obtained via smoothing, secondly a new dictionary can be reconstructed via fusing the binary image with the original training dictionary, finally the test image can be classified as the existing class via Bayesian robust coding. The experimental results based on AR face database show that the proposed algorithm has higher face recognition rate comparison with RRC and RSC algorithm.


2013 ◽  
Vol 278-280 ◽  
pp. 1211-1214
Author(s):  
Jun Ying Zeng ◽  
Jun Ying Gan ◽  
Yi Kui Zhai

A fast sparse representation face recognition algorithm based on Gabor dictionary and SL0 norm is proposed in this paper. The Gabor filters, which could effectively extract local directional features of the image at multiple scales, are less sensitive to variations of illumination, expression and camouflage. SL0 algorithm, with the advantages of calculation speed,require fewer measurement values by continuously differentiable function approximation L0 norm and reconstructed sparse signal by minimizing the approximate L0 norm. The algorithm obtain the local feature face by extracting the Gabor face feature, reduce the dimensions by principal component analysis, fast sparse classify by the SL0 norm. Under camouflage condition, The algorithm block the Gabor facial feature and improve the speed of formation of the Gabor dictionary. The experimental results on AR face database show that the proposed algorithm can improve recognition speed and recognition rate to some extent and can generalize well to the face recognition, even with a few training image per class.


2015 ◽  
Vol 734 ◽  
pp. 562-567 ◽  
Author(s):  
En Zeng Dong ◽  
Yan Hong Fu ◽  
Ji Gang Tong

This paper proposed a theoretically efficient approach for face recognition based on principal component analysis (PCA) and rotation invariant uniform local binary pattern texture features in order to weaken the effects of varying illumination conditions and facial expressions. Firstly, the rotation invariant uniform LBP operator was adopted to extract the local texture feature of the face images. Then PCA method was used to reduce the dimensionality of the extracted feature and get the eigenfaces. Finally, the nearest distance classification was used to distinguish each face. The method has been accessed on Yale and ATR-Jaffe face databases. Results demonstrate that the proposed method is superior to standard PCA and its recognition rate is higher than the traditional PCA. And the proposed algorithm has strong robustness against the illumination changes, pose, rotation and expressions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhixue Liang

In the contactless delivery scenario, the self-pickup cabinet is an important terminal delivery device, and face recognition is one of the efficient ways to achieve contactless access express delivery. In order to effectively recognize face images under unrestricted environments, an unrestricted face recognition algorithm based on transfer learning is proposed in this study. First, the region extraction network of the faster RCNN algorithm is improved to improve the recognition speed of the algorithm. Then, the first transfer learning is applied between the large ImageNet dataset and the face image dataset under restricted conditions. The second transfer learning is applied between face image under restricted conditions and unrestricted face image datasets. Finally, the unrestricted face image is processed by the image enhancement algorithm to increase its similarity with the restricted face image, so that the second transfer learning can be carried out effectively. Experimental results show that the proposed algorithm has better recognition rate and recognition speed on the CASIA-WebFace dataset, FLW dataset, and MegaFace dataset.


Author(s):  
Liping Zhou ◽  
Mingwei Gao ◽  
Chun He

At present, the correct recognition rate of face recognition algorithm is limited under unconstrained conditions. To solve this problem, a face recognition algorithm based on deep learning under unconstrained conditions is proposed in this paper. The algorithm takes LBP texture feature as the input data of deep network, and trains the network layer by layer greedily to obtain optimized parameters of network, and then uses the trained network to predict the test samples. Experimental results on the face database LFW show that the proposed algorithm has higher correct recognition rate than some traditional algorithms under unconstrained conditions. In order to further verify its effectiveness and universality, this algorithm was also tested in YALE and YALE-B, and achieved a high correct recognition rate as well, which indicated that the deep learning method using LBP texture feature as input data is effective and robust to face recognition.


2018 ◽  
Vol 119 (9/10) ◽  
pp. 529-544 ◽  
Author(s):  
Ihab Zaqout ◽  
Mones Al-Hanjori

Purpose The face recognition problem has a long history and a significant practical perspective and one of the practical applications of the theory of pattern recognition, to automatically localize the face in the image and, if necessary, identify the person in the face. Interests in the procedures underlying the process of localization and individual’s recognition are quite significant in connection with the variety of their practical application in such areas as security systems, verification, forensic expertise, teleconferences, computer games, etc. This paper aims to recognize facial images efficiently. An averaged-feature based technique is proposed to reduce the dimensions of the multi-expression facial features. The classifier model is generated using a supervised learning algorithm called a back-propagation neural network (BPNN), implemented on a MatLab R2017. The recognition rate and accuracy of the proposed methodology is comparable with other methods such as the principle component analysis and linear discriminant analysis with the same data set. In total, 150 faces subjects are selected from the Olivetti Research Laboratory (ORL) data set, resulting 95.6 and 85 per cent recognition rate and accuracy, respectively, and 165 faces subjects from the Yale data set, resulting 95.5 and 84.4 per cent recognition rate and accuracy, respectively. Design/methodology/approach Averaged-feature based approach (dimension reduction) and BPNN (generate supervised classifier). Findings The recognition rate is 95.6 per cent and recognition accuracy is 85 per cent for the ORL data set, whereas the recognition rate is 95.5 per cent and recognition accuracy is 84.4 per cent for the Yale data set. Originality/value Averaged-feature based method.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Kun Sun ◽  
Xin Yin ◽  
Mingxin Yang ◽  
Yang Wang ◽  
Jianying Fan

At present, the face recognition method based on deep belief network (DBN) has advantages of automatically learning the abstract information of face images and being affected slightly by active factors, so it becomes the main method in the face recognition area. Because DBN ignores the local information of face images, the face recognition rate based on DBN is badly affected. To solve this problem, a face recognition method based on center-symmetric local binary pattern (CS-LBP) and DBN (FRMCD) is proposed in this paper. Firstly, the face image is divided into several subblocks. Secondly, CS-LBP is used to extract texture features of each image subblock. Thirdly, texture feature histograms are formed and input into the DBN visual layer. Finally, face classification and face recognition are completed through deep learning in DBN. Through the experiments on face databases ORL, Extend Yale B, and CMU-PIE by the proposed method (FRMCD), the best partitioning way of the face image and the hidden unit number of the DBN hidden layer are obtained. Then, comparative experiments between the FRMCD and traditional methods are performed. The results show that the recognition rate of FRMCD is superior to those of traditional methods; the highest recognition rate is up to 98.82%. When the number of training samples is less, the FRMCD has more significant advantages. Compared with the method based on local binary pattern (LBP) and DBN, the time-consuming of FRMCD is shorter.


2013 ◽  
Vol 380-384 ◽  
pp. 3526-3529 ◽  
Author(s):  
Jing Hui Wu ◽  
Lu Han ◽  
Jia Tong Li ◽  
Yi Xiao Zhao ◽  
Lin Bo Tang ◽  
...  

This paper proposes a face recognition algorithm based on the combination of local binary pattern (LBP) texture features and extreme learning machine (ELM). The face image is divided into several regions, and the LBP features are extracted from these regions and combined together to form a feature vector which will be the input data of ELM. It shows that ELM performs well in classification applications, and ELM and support vector machine (SVM) are equivalent from the optimization point of view. But ELM has milder optimization constraints and much less training time. Our experiments are carried out on two well-known face databases, and the results show that compared with compared to PCA+NN, PCA+SVM and PCA+ELM the proposed method can achieve higher recognition rates.


2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740041 ◽  
Author(s):  
Xiaojie Liu ◽  
Lin Shen ◽  
Honghui Fan

In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.


Sign in / Sign up

Export Citation Format

Share Document