Smooth second-order nonsingular terminal sliding mode control for reusable launch vehicles

Author(s):  
Shaobo Ni ◽  
Jiayuan Shan

Purpose – The purpose of this paper is to present a sliding mode attitude controller for reusable launch vehicle (RLV) which is nonlinear, coupling, and includes uncertain parameters and external disturbances. Design/methodology/approach – A smooth second-order nonsingular terminal sliding mode (NTSM) controller is proposed for RLV in reentry phase. First, a NTSM manifold is proposed for finite-time convergence. Then a smooth second sliding mode controller is designed to establish the sliding mode. An observer is utilized to estimate the lumped disturbance and the estimation result is used for feedforward compensation in the controller. Findings – It is mathematically proved that the proposed sliding mode technique makes the attitude tracking errors converge to zero in finite time and the convergence time is estimated. Simulations are made for RLV through the assumption that aerodynamic parameters and atmospheric density are perturbed. Simulation results demonstrate that the proposed control strategy is effective, leading to promising performance and robustness. Originality/value – By the proposed controller, the second-order sliding mode is established. The attitude tracking error converges to zero in a finite time. Meanwhile, the chattering is alleviated and a smooth control input is obtained.

Author(s):  
Shuai Xu ◽  
Min Gao ◽  
Dan Fang ◽  
Yi Wang ◽  
Baochen Li

Aiming at the problem of missile attacking ground target in pitch plane, combined with a composite fast nonsingular terminal sliding mode, a new adaptive finite-time stable guidance law with attack angle constraint is designed based on the second-order sliding mode control. The improved extended state observer is used to estimate the uncertainties and compensate the control quantity, and the dynamic control gains are designed to avoid the problem about “excessive estimation” of the parameter upper limit. According to the Lyapunov stability theory, it is proved that the system states can converge into a small neighborhood near the equilibrium point in a finite time. Monte Carlo simulation is carried out by randomly generating initial conditions, which proves that the guidance law has strong adaptability to different initial conditions and has good guidance precision.


2020 ◽  
Vol 29 (13) ◽  
pp. 2050212
Author(s):  
Zhi Gao ◽  
Zhihao Zhu ◽  
Yu Guo

For multi-spacecraft with actuator saturation, inertia uncertainties and external disturbances, a distributed finite-time coordinated attitude tracking control problem for the spacecraft with the communication topology containing fewer information paths is investigated. Aiming at reducing the communication path, a class of distributed finite-time state observers is designed. To speed up the convergence rate of the multiple spacecraft system, a fast nonsingular terminal sliding mode function is proposed. Moreover, an adaptive control term is proposed to suppress the impact of the external state-dependent disturbances and unknown time-varying inertia uncertainties. Further considering the actuator saturation owing to its physical limitations, a saturation function is designed. With the distributed finite-time observers, the fast nonsingular terminal sliding mode function, the adaptive update law and the saturation function, a distributed finite-time coordinated attitude tracking saturation controller is designed. Using the proposed controller, the follower can synchronize with the common leader with time-varying trajectory in finite time. Simulation results demonstrate the effectiveness of the designed controller.


Author(s):  
Cheng Huang ◽  
Yan Wang ◽  
Xing-lin Chen

This paper studies the problem of attitude tracking control for spacecraft rendezvous and docking based on a physical ground simulation system. Two finite-time controllers based on quaternion are proposed by using a novel fast nonsingular terminal sliding mode surface associated with the adaptive control, the novel fast nonsingular terminal sliding mode surface not only contains the advantages of the fast nonsingular terminal sliding mode surface, but also can eliminate unwinding caused by the quaternion. The first controller, which is continuous and chattering-free, can compensate unknown constant external disturbances, while the second controller can both compensate parametric uncertainties and varying external disturbances with unknown bounds without chattering. Lyapunov theoretical analysis and simulation results show that the two controllers can make the closed-loop system errors converge to zero in finite time and guarantee the finite-time stability of the system.


Author(s):  
Qun Zong ◽  
Xiuyun Zhang ◽  
Shikai Shao ◽  
Bailing Tian ◽  
Wenjing Liu

In this paper, finite-time fault-tolerant attitude tracking control is investigated for rigid spacecraft system with external disturbances, inertia uncertainties and actuator faults. A novel finite-time disturbance observer combined with a nonsingular terminal sliding mode controller is developed. Using an equivalent output error injection approach, a finite-time disturbance observer with simple structure is firstly designed to estimate lumped uncertainty. Then, to remove the requirement of prior knowledge about lumped uncertainty and reduce chattering, an adaptive finite-time disturbance observer is further proposed, and the estimations converge to the neighborhood of the true values. Based on the designed observer, a unified finite-time attitude controller is obtained automatically. Finally, both additive and multiplicative faults are considered for simulations and the results illustrate the great fault-tolerant capability of the proposed scheme.


Author(s):  
Zeng Wang ◽  
Yuxin Su ◽  
Liyin Zhang

This paper addresses the finite time attitude tracking for rigid spacecraft with inertia uncertainties and external disturbances. First, a new nonsingular terminal sliding mode (NTSM) surface is proposed for singularity elimination. Second, a robust controller based on NTSM is designed to solve the attitude tracking problem. It is proved that the new NTSM can converge to zero within finite time, and the attitude tracking errors converge to an arbitrary small bound centered on equilibrium point within finite time and then go to equilibrium point asymptotically. The appealing features of the proposed control are fast convergence, high precision, strong robustness, and easy implementation. Simulations verify the effectiveness of the proposed approach.


Author(s):  
Bin Ren ◽  
Yao Wang ◽  
Jiayu Chen ◽  
Silu Chen

Abstract Robotic manipulators are complex and dynamic nonlinear mechanical systems subject to numerous uncertainties, such as payload variations, frictions, and unmodeled dynamics. To mitigate the uncertainty caused by these disturbances and minimize the tracking errors of the controllers, this study proposed a finite time tracking-based controller (FTC) that embeds a nonlinear disturbance observer (NDO) and a second-order sliding mode modifier (SOSM). The NDO was incorporated to compensate for the system's global bounded uncertainty and the SOSM employed a robust nonsingular terminal sliding-mode modifier to stabilize the controller. The theoretical analysis showed that the tracking error could quickly converge in finite time. Simulation on a typical robotics manipulator demonstrated the practical appeal of the proposed scheme.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Liang Zhang ◽  
Liang Jing ◽  
Liheng Ye ◽  
Xing Gao

Purpose This paper aims to investigate the problem of attitude control for a horizontal takeoff and horizontal landing reusable launch vehicle. Design/methodology/approach In this paper, a predefined-time attitude tracking controller is presented for a horizontal takeoff and horizontal landing reusable launch vehicle (HTHLRLV). Firstly, the attitude tracking error dynamics model of the HTHLRLV is developed. Subsequently, a novel sliding mode surface is designed with predefined-time stability. Furthermore, by using the proposed sliding mode surface, a predefined-time controller is derived. To compensate the external disturbances or model uncertainties, a fixed-time disturbance observer is developed, and its convergence time can be defined as a prior control parameter. Finally, the stability of the proposed sliding mode surface and the controller can be proved by the Lyapunov theory. Findings In contrast to other fixed-time methods, this controller only requires three control parameters, and the convergence time can be predefined instead of being estimated. The simulation results also demonstrate the effectiveness of the proposed controller. Originality/value A novel predefined-time attitude tracking controller is developed based on the predefined-time sliding mode surface (SMS) and fixed-time disturbance observer (FxTDO). The convergence time of the system can be selected as a prior control parameter for SMS and FxTDO.


Author(s):  
Chao Han ◽  
Zhen Liu ◽  
Jianqiang Yi

In this paper, a novel adaptive finite-time control of air-breathing hypersonic vehicles is proposed. Based on the immersion and invariance theory, an adaptive finite-time control method for general second-order systems is first derived, using nonsingular terminal sliding mode scheme. Then the method is applied to the control system design of a flexible air-breathing vehicle model, whose dynamics can be decoupled into first-order and second-order subsystems by time-scale separation principle. The main features of this hypersonic vehicle control system lie in the design flexibility of the parameter adaptive laws and the rapid convergence to the equilibrium point. Finally, simulations are conducted, which demonstrate that the control system has the features of fast and accurate tracking to command trajectories and strong robustness to parametric and non-parametric uncertainties.


Sign in / Sign up

Export Citation Format

Share Document