Dynamic walking of humanoid robot on flat surface using amplified LIPM plus flywheel model

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhishek Kumar Kashyap ◽  
Dayal R. Parhi

PurposeHumanoid robots have complicated dynamics, and they lack dynamic stability. Despite having similarities in kinematic structure, developing a humanoid robot with robust walking is quite difficult. In this paper, an attempt to produce a robust and expected walking gait is made by using an ALO (ant lion optimization) tuned linear inverted pendulum model plus flywheel (LIPM plus flywheel).Design/methodology/approachThe LIPM plus flywheel provides the stabilized dynamic walking, which is further optimized by ALO during interaction with obstacles. It gives an ultimate turning angle, which makes the robot come closer to the obstacle and provide a turning angle that optimizes the travel length. This enhancement releases the constraint on the height of the COM (center of mass) and provides a larger stride. The framework of a sequential locomotion planer has been discussed to get the expected gait. The proposed method has been successfully tested on a simulated model and validated on the real NAO humanoid robot.FindingsThe convergence curve defends the selection of the proposed controller, and the deviation under 5% between simulation and experimental results in regards to travel length and travel time proves its robustness and efficacy. The trajectory of various joints obtained using the proposed controller is compared with the joint trajectory obtained using the default controller. The comparison shows the stable walking behavior generated by the proposed controller.Originality/valueHumanoid robots are preferred over mobile robots because they can easily imitate the behaviors of humans and can result in higher output with higher efficiency for repetitive tasks. A controller has been developed using tuning the parameters of LIPM plus flywheel by the ALO approach and implementing it in a humanoid robot. Simulations and experiments have been performed, and joint angles for various joints are calculated and compared with the default controller. The tuned controller can be implemented in various other humanoid robots

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Asita Kumar Rath ◽  
Dayal R. Parhi ◽  
Harish Chandra Das ◽  
Priyadarshi Biplab Kumar ◽  
Manjeet Kumar Mahto

PurposeTo navigate humanoid robots in complex arenas, a significant level of intelligence is required which needs proper integration of computational intelligence with the robot's controller. This paper describes the use of a combination of genetic algorithm and neural network for navigational control of a humanoid robot in given cluttered environments.Design/methodology/approachThe experimental work involved in the current study has been done by a NAO humanoid robot in laboratory conditions and simulation work has been done by the help of V-REP software. Here, a genetic algorithm controller is first used to generate an initial turning angle for the robot and then the genetic algorithm controller is hybridized with a neural network controller to generate the final turning angle.FindingsFrom the simulation and experimental results, satisfactory agreements have been observed in terms of navigational parameters with minimal error limits that justify the proper working of the proposed hybrid controller.Originality/valueWith a lack of sufficient literature on humanoid navigation, the proposed hybrid controller is supposed to act as a guiding way towards the design and development of more robust controllers in the near future.


Author(s):  
Joanne Pransky

Purpose The following paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD-turned-entrepreneur regarding the commercialization and challenges of bringing a technological invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Jun Ho Oh, Professor of Mechanical Engineering at the Korea Advanced Institute of Science and Technology (KAIST) and Director of KAIST’s Hubolab. Determined to build a humanoid robot in the early 2000s to compete with Japan’s humanoids, Dr Oh and KAIST created the KHR1. This research led to seven more advanced versions of a biped humanoid robot and the founding of the Robot for Artificial Intelligence and Boundless Walking (Rainbow) Co., a professional technological mechatronics company. In this interview, Dr Oh shares the history and success of Korea’s humanoid robot research. Findings Dr Oh received his BSc in 1977 and MSc in Mechanical Engineering in 1979 from Yonsei University. Oh worked as a Researcher for the Korea Atomic Energy Research Institute before receiving his PhD from the University of California (UC) Berkeley in mechanical engineering in 1985. After his PhD, Oh remained at UC Berkeley to do Postdoctoral research. Since 1985, Oh has been a Professor of Mechanical Engineering at KAIST. He was a Visiting Professor from 1996 to 1997 at the University of Texas Austin. Oh served as the Vice President of KAIST from 2013-2014. In addition to teaching, Oh applied his expertise in robotics, mechatronics, automatic and real-time control to the commercial development of a series of humanoid robots. Originality/value Highly self-motivated and always determined, Dr Oh’s initial dream of building the first Korean humanoid bipedal robot has led him to become one of the world leaders of humanoid robots. He has contributed widely to the field over the nearly past two decades with the development of five versions of the HUBO robot. Oh led Team KAIST to win the 2015 DARPA Robotics Challenge (DRC) and a grand prize of US$2m with its humanoid robot DRC-HUBO+, beating 23 teams from six countries. Oh serves as a robotics policy consultant for the Korean Ministry of Commerce Industry and Energy. He was awarded the 2016 Changjo Medal for Science and Technology, the 2016 Ho-Am Prize for engineering, and the 2010 KAIST Distinguished Professor award. He is a member of the Korea Academy of Science and Technology.


In the coming decades, humanoid robots will play a rising role in society. The present article discusses their walking control and obstacle avoidance on uneven terrain using enhanced spring-loaded inverted pendulum model (ESLIP). The SLIP model is enhanced by tuning it with an adaptive particle swarm optimization (APSO) approach. It helps the humanoid robot to reach closer to the obstacles in order to optimize the turning angle to optimize the path length. The desired trajectory, along with the sensory data, is provided to the SLIP model, which creates compatible COM (center of mass) dynamics for stable walking. This output is fed to APSO as input, which adjusts the placement of the foot during interaction with uneven surfaces and obstacles. It provides an optimum turning angle for shunning the obstacles and ensures the shortest path length. Simulation has been carried out in a 3D simulator based on the proposed controller and SLIP controller in uneven terrain.


2019 ◽  
Vol 36 (2) ◽  
pp. 599-621 ◽  
Author(s):  
Tran Thien Huan ◽  
Ho Pham Huy Anh

Purpose The purpose of this paper is to design a novel optimized biped robot gait generator which plays an important role in helping the robot to move forward stably. Based on a mathematical point of view, the gait design problem is investigated as a constrained optimum problem. Then the task to be solved is closely related to the evolutionary calculation technique. Design/methodology/approach Based on this fact, this paper proposes a new way to optimize the biped gait design for humanoid robots that allows stable stepping with preset foot-lifting magnitude. The newly proposed central force optimization (CFO) algorithm is used to optimize the biped gait parameters to help a nonlinear uncertain humanoid robot walk robustly and steadily. The efficiency of the proposed method is compared with the genetic algorithm, particle swarm optimization and improved differential evolution algorithm (modified differential evolution). Findings The simulated and experimental results carried out on the small-sized nonlinear uncertain humanoid robot clearly demonstrate that the novel algorithm offers an efficient and stable gait for humanoid robots with respect to accurate preset foot-lifting magnitude. Originality/value This paper proposes a new algorithm based on four key gait parameters that enable dynamic equilibrium in stable walking for nonlinear uncertain humanoid robots of which gait parameters are initiatively optimized with CFO algorithm.


2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988808 ◽  
Author(s):  
Tran Thien Huan ◽  
Ho Pham Huy Anh ◽  
Cao Van Kien

This article proposes a new method used to optimize the design process of nature-walking gait generator that permits biped robot to stably and naturally walk with preset foot-lift magnitude. The new Jaya optimization algorithm is innovatively applied to optimize the biped gait four key parameters initiatively applied to ensure the uncertain nonlinear humanoid robot walks robustly and steadily. The efficiency of the proposed Jaya-based identification approach is compared with the central force optimization and improved differential evolution (modified differential evolution) algorithms. The simulation and experimental results tested on the original small-sized biped robot HUBOT-4 convincingly demonstrate that the novel proposed algorithm offers an efficient and stable gait for humanoid robots with precise height of foot-lift value.


Author(s):  
Abhishek Kumar Kashyap ◽  
Dayal R Parhi ◽  
Priyadarshi Biplab Kumar

Humanoid robots, with their overall resemblance to a human body, is modeled for flawless interaction with human-made tools or the environment. In this study, navigation of humanoid robot using hybrid Artificial potential field (APF) and Moth flame optimization (MFO) approach have been performed. The hybrid approach provides the final turning angle (FTA), which is optimum to avoid collision with the hindrances. APF utilizes a negative potential field and a positive potential field to find the location of obstacles and target, respectively. The navigation starts towards the target; when the robot interacts with the obstacle, APF provides an intermediate angle (IA). The IA, along with the position of the obstacle, is fed into MFO as an input. This technique provides the FTA (optimum) to avoid collisions and guide a robot to the target. It is implemented in a single humanoid system and a multi-humanoid system. The presence of multiple humanoids can create the chance of inter-collision. It is dismissed by employing a dining philosopher controller to the proposed technique. Simulations and experiments are accomplished on simulated and real humanoid NAO. The coherency in the behavior of the results evaluated by the simulations and real-time experiments demonstrates the efficiency of the proposed AI technique. Comparisons are performed with a previously used method to validate the robustness of the technique.


Author(s):  
Fayong Guo ◽  
Tao Mei ◽  
Minzhou Luo ◽  
Marco Ceccarelli ◽  
Ziyi Zhao ◽  
...  

Purpose – Humanoid robots should have the ability of walking in complex environment and overcoming large obstacles in rescue mission. Previous research mainly discusses the problem of humanoid robots stepping over or on/off one obstacle statically or dynamically. As an extreme case, this paper aims to demonstrate how the robots can step over two large obstacles continuously. Design/methodology/approach – The robot model uses linear inverted pendulum (LIP) model. The motion planning procedure includes feasibility analysis with constraints, footprints planning, legs trajectory planning with collision-free constraint, foot trajectory adapter and upper body motion planning. Findings – The motion planning with the motion constraints is a key problem, which can be considered as global optimization issue with collision-free constraint, kinematic limits and balance constraint. With the given obstacles, the robot first needs to determine whether it can achieve stepping over, if feasible, and then the robot gets the motion trajectory for the legs, waist and upper body using consecutive obstacles stepping over planning algorithm which is presented in this paper. Originality/value – The consecutive stepping over problem is proposed in this paper. First, the paper defines two consecutive stepping over conditions, sparse stepping over (SSO) and tight stepping over (TSO). Then, a novel feasibility analysis method with condition (SSO/TSO) decision criterion is proposed for consecutive obstacles stepping over. The feasibility analysis method’s output is walking parameters with obstacles’ information. Furthermore, a modified legs trajectory planning method with center of mass trajectory compensation using upper body motion is proposed. Finally, simulations and experiments for SSO and TSO are carried out by using the XT-I humanoid robot platform with the aim to verify the validity and feasibility of the novel methods proposed in this paper.


Author(s):  
Yuan Wei ◽  
Jing Zhao

Purpose This paper aims to deal with the problem of designing robot behaviors (mainly to robotic arms) to express emotions. The authors study the effects of robot behaviors from our humanoid robot NAO on the subject’s emotion expression in human–robot interaction (HRI). Design/methodology/approach A method to design robot behavior through the movement primitives is proposed. Then, a novel dimensional affective model is built. Finally, the concept of action semantics is adopted to combine the robot behaviors with emotion expression. Findings For the evaluation of this combination, the authors assess positive (excited and happy) and negative (frightened and sad) emotional patterns on 20 subjects which are divided into two groups (whether they were familiar with robots). The results show that the recognition of the different emotion patterns does not have differences between the two groups and the subjects could recognize the robot behaviors with emotions. Practical implications Using affective models to guide robots’ behavior or express their intentions is highly beneficial in human–robot interaction. The authors think about several applications of the emotional motion: improve efficiency in HRI, direct people during disasters, better understanding with human partners or help people perform their tasks better. Originality/value This paper presents a method to design robot behaviors with emotion expression. Meanwhile, a similar methodology can be used in other parts (leg, torso, head and so on) of humanoid robots or non-humanoid robots, such as industrial robots.


Author(s):  
Fayong Guo ◽  
Tao Mei ◽  
Marco Ceccarelli ◽  
Ziyi Zhao ◽  
Tao Li ◽  
...  

Purpose Walking on inclined ground is an important ability for humanoid robots. In general, conventional strategies for walking on slopes lack technical analysis in, first, the waist posture with respect to actual robot and, second, the landing impact, which weakens the walking stability. The purpose of this paper is to propose a generic method for walking pattern generation considering these issues with the aim of enabling humanoid robot to walk dynamically on a slope. Design/methodology/approach First, a virtual ground method (VGM) is proposed to give a continuous and intuitive zero-moment point (ZMP) on slopes. Then, the dynamic motion equations are derived based on 2D and 3D models, respectively, by using VGM. Furthermore, the waist posture with respect to the actual robot is analyzed. Finally, a reformative linear inverted pendulum (LIP) named the asymmetric linear inverted pendulum (ALIP) is proposed to achieve stable and dynamical walking in any direction on a slope with lower landing impact. Findings Simulations and experiments are carried out using the DRC-XT humanoid robot platform with the aim of verifying the validity and feasibility of these new methods. ALIP with consideration of waist posture is practical in extending the ability of walking on slopes for humanoid robots. Originality/value A generic method called ALIP for humanoid robots walking on slopes is proposed. ALIP is based on LIP and several changes, including model analysis, motion equations and ZMP functions, are discussed.


Author(s):  
Sebastien Cotton ◽  
Philippe Fraisse ◽  
Andrew P. Murray

This paper proposes an analysis of the manipulability of the Center of Mass (CoM) of humanoid robots. Starting from the dynamic equations of humanoid robots, the operational space formulation is used to express the dynamics of humanoid robots at their CoM and under their specific characteristics: a free-floating base, forces at contact points, and dynamic balance constraints. After a review of the kinematic manipulability of the CoM, the concept of dynamic manipulability of the CoM is introduced. The latter represents the ability of a humanoid robot to generate a spatial motion under a stability criterion. The size and shape of the dynamic manipulability of the CoM are a function of the joint torque limitations, the contact forces and the zero moment point used as a stability criteria. Two calculations of the CoM dynamic manipulability are proposed, a fast ellipsoid approximation, and the exact polyhedron computation. A case study illustrates the proposed approach on the HOAP3 humanoid robot and its use for mechanical design optimization.


Sign in / Sign up

Export Citation Format

Share Document