Fractal modeling of elastic-plastic contact between three-dimensional rough surfaces

2018 ◽  
Vol 70 (2) ◽  
pp. 290-300 ◽  
Author(s):  
Rufei Yu ◽  
Wei Chen

Purpose This paper aims to propose a semi-analytical model to investigate the elastic-plastic contact between fractal rough surfaces. Parametric studies have been performed to analyze the dependencies between the contact properties and the scale-independent fractal parameters. Design/methodology/approach A modified two-variable Weierstrass-Mandelbrot function has been used to build the geometrical model of rough surfaces. The computation program was developed using software MATLAB R2015a. The results have been qualitatively validated by the existing theoretical and experimental results in the literature. Findings In most cases, a nonlinear relation between the load and the displacement of the rigid plane is found. Only under the condition of larger loads, an approximate linear relation can be seen for great D and small G values. (D: fractal dimension and G: fractal roughness). Originality/value The contact model of the cylindrical joints (conformal contact) with radial clearance is constructed by using the fractal theory and the Kogut-Etsion elastic-plastic contact model, which includes purely elastic, elastic-plastic and fully plastic contacts. The present method can generate a more reliable calculation result as compared with the Hertz contact model and a higher calculation efficiency as compared with the finite element method for the conformal contact problem.

Author(s):  
Yongsheng Zhao ◽  
Cui Fang ◽  
Ligang Cai ◽  
Zhifeng Liu

The thermal contact conductance is an important problem in the field of heat transfer. In this research, a three-dimensional fractal theory based on the thermal contact conductance model is presented. The topography of the contact surfaces was fractal featured and determined by fractal parameters. The asperities in the microscale were considered as elastic, elastic-plastic, or plastic deformations. The real contact area of the asperities could be obtained based on the Hertz contact theory. It was assumed that the rough contact surface was composed of numerous discrete and parallel microcontact cylinders. Consequently, the thermal contact conductance of the surface roughness was composed of the thermal constriction conductance of microcontacts and the air medium thermal conductance of microgaps. The thermal contact conductance of rough surfaces could be calculated by the microasperities integration. An experimental set-up with annular interface was designed to verify the presented thermal contact conductance model. Three materials were used for the thermal contact conductance analysis with different fractal dimensions D and fractal roughness parameters G. The numerical results demonstrated that the thermal contact conductance could be affected by the elastic-plastic deformation of the asperities and the gap thermal conductance should not be ignored under the lower contact load. The presented model would provide a theoretical basis for thermal transfer engineering application.


2019 ◽  
Vol 72 (3) ◽  
pp. 449-454 ◽  
Author(s):  
Chunxing Gu ◽  
Shuwen Wang

Purpose Surface coatings have been introduced on the contact surfaces to protect the mechanical parts for a long time. However, in terms of the optimum design of coatings, some key coating parameters are still selected by trial and error. The optimum design of coatings can be conducted by numerical experiments. This paper aims to predict the contact behavior of the coated rough surfaces accurately. One improved asperity contact model for the coated rough surfaces considering the misalignment of asperities would be developed. Design/methodology/approach Incorporating the coated asperity contact model into the improved Greenwood Tripp-based statistical approach, the proposed model can predict the elastic-plastic behaviors of the interacting coated asperities. Findings According to numerical experiments, compared with the coated asperity contact model in which an equivalent rough surface against a plane is assumed, the improved asperity contact model for the coated contacts can account for the effect of permitting misalignment of two rough surfaces. The contacts having the thicker, stiffer and harder coatings result in higher asperity contact pressure and smaller real contact area fraction under the given Stribeck oil film ratio. Originality/value In this paper, one statistical coated asperity contact model for two rough surfaces was developed. The developed model can consider the elastic-plastic behavior of interacting coated asperities. The effects of the coating thickness and its mechanical properties on the contact behavior of the rough surfaces with coatings can be evaluated based on the developed model.


2020 ◽  
Vol 231 (10) ◽  
pp. 4397-4413
Author(s):  
Honghai Wang ◽  
Peng Jia ◽  
Liquan Wang ◽  
Feihong Yun ◽  
Gang Wang ◽  
...  

2019 ◽  
Vol 10 (5) ◽  
pp. 660-677
Author(s):  
Norwahida Yusoff ◽  
Feizal Yusof

Purpose The purpose of this paper is to present the characteristics of elastic-plastic deformation and stress fields at the intersection of a crack front and the free surface of a three-dimensional body, referred to as corner fields. Design/methodology/approach The structures of elastic-plastic corner deformation field were assessed experimentally by looking at the corner border displacement and strain fields on the surface of a compact tension (CT) specimen using digital image correlation method. For assessment and verification purposes, the results were compared with the fields predicted through finite element analysis. The latter method was used further to assess the corner stress field. Findings The characteristics of displacement, strain and stress fields in the vicinity of a corner vertex in a finite geometry CT specimen in a strain hardening condition are independent of load and geometry. One of the distinctive features that becomes evident in this study is that the stress state at the corner vertex at θ=0° is a simple uniaxial tension. Originality/value This paper provides some insights on the structure of elastic-plastic corner fields that could optimistically be served as a fundamental framework towards the development of analytical solutions for elastic-plastic corner fields.


2014 ◽  
Vol 66 (3) ◽  
pp. 459-467
Author(s):  
Yan Lu ◽  
Zuomin Liu

Purpose – The purpose of this manuscript is to analyze the fusion micro-zone generated by typical rough surfaces and investigate the factors of thermal effects on the tribological performance of surface asperities and its results verified by the experiment. Design/methodology/approach – A three-dimensional fractal rough surfaces sliding contact model has been developed, which takes into account temperature rise and distribution. The finite-element method, Green's function method, thermal conduct theory and contact mechanics are used as the solution methods. Findings – The results yield insights into the effects of the sliding velocity, thermal properties of the material, normal load and surface roughness on the temperature rise of the sliding contact surface. It allows the specification of working conductions' properties to reduce fusion. Originality/value – The model is developed and described by using the features of the contact between one flat surface and one rough surface with varied topographies. It can be easily applied for solving the sliding contact problems with different working conditions and specified for designing the surface accuracy in the severe working condition.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Ali Sepehri ◽  
Kambiz Farhang

Approximate closed-form equations governing the shoulder-shoulder contact of asperities are derived based on a generalization by Chang, Etsion, and Bogy. The work entails the consideration of asperity shoulder-shoulder contact in which the volume conservation is assumed in the plastic flow regime. Shoulder-shoulder asperity contact gives rise to a slanted contact force comprising tangential and normal components. Each force component comprises elastic and plastic terms, which upon statistical summation yields the force component for the elastic and plastic forces for the contact of two rough surfaces. Half-plane tangential force due to elastic-plastic contact is derived through the statistical summation of tangential force component along an arbitrary tangential direction. Two sets of equations are found. In the first set of equations the functional forms are simpler and provide approximation of contact force to within 9%. The second set is enhanced equations derived from the first set of approximate equations that achieve an accuracy of within 0.2%.


Author(s):  
Shaobiao Cai ◽  
Bharat Bhushan

A numerical three-dimensional contact model is presented to investigate the contact behavior of multilayered elastic-perfectly plastic solids with rough surfaces. The surface displacement and contact pressure distributions are obtained based on the variational principle with fast Fourier transform (FFT)-based scheme. Von Mises yield criterion is used to determine the onset of yield. The effective hardness is modeled and plays role when the local displacement meet the maximum displacement criterion. Simulations are performed to obtain the contact pressures, fractional total contact area, fractional plastic contact area, and surface/subsurface stresses. These contact statistics are analyzed to study the effects of the layer-to-substrate ratios of stiffness and hardness, surface roughness, and layers thickness of rough, two-layered elastic/plastic solids. The results yield insight into the effects of stiffness and hardness of layers and substrates, surface roughness, and applied load on the contact performance. The layer parameters leading to low friction, stiction, and wear are investigated and identified.


2019 ◽  
Vol 10 (5) ◽  
pp. 644-659
Author(s):  
Feizal Yusof ◽  
Karh Heng Leong

Purpose Crack tip stresses are used to relate the ability of structures to perform under the influence of cracks and defects. One of the methods to determine three-dimensional crack tip stresses is through the J-Tz method. The J-Tz method has been used extensively to characterize the stresses of cracked geometries that demonstrate positive T-stress but limited in characterizing negative T-stresses. The purpose of this paper is to apply the J-Tz method to characterize a three-dimensional crack tip stress field in a changing crack length from positive to negative T-stress geometries. Design/methodology/approach Elastic-plastic crack border fields of deep and shallow cracks in tension and bending loads were investigated through a series of three-dimensional finite element (FE) and analytical J-Tz solutions for a range of crack lengths ranging from 0.1⩽a/W⩽0.5 for two thickness extremes of B/(W − a)=1 and 0.05. Findings Both the FE and the J-Tz approaches showed that the combined in-plane and the out-of-plane constraint loss were differently affected by the T-stress and the out-of-plane size effects when the crack length changed from deep to shallow cracks. The conditions of the J-Tz dominance on the three-dimensional crack front tip were shown to be limited to positive T-stress geometries, and the J-Tz-Q2D approach can extend the crack border dominance of the three-dimensional deep and shallow bend models along the crack front tip until perturbed by an elastic-plastic corner field. Practical implications The paper reports the limitation of the J-Tz approach, which is used to calculate the state of three-dimensional crack tip stresses in power law hardening materials. The results from this paper suggest that the characterization of the three-dimensional crack tip stress in power law hardening materials is still an open issue and requires other suitable solutions to solve the problem. Originality/value This paper demonstrates a thorough analysis of a three-dimensional elastic-plastic crack tip fields for geometries that are initially either fully constrained (positive T-stress) or unconstrained (negative T-stress) crack tip fields but, subsequently, the T-stress sign changes due to crack length reduction and specimen thickness increase. The J-Tz stress-based method has been tested and its dominance over the crack tip field is shown to be affected by the combined in-plane and the out-of-plane constraints and the corner field effects.


Sign in / Sign up

Export Citation Format

Share Document