Investigation of friction noise properties of M50 matrix curved microporous channel composites filled with Sn-Ag-Cu

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zhou ◽  
Jin Ma ◽  
Hongyan Zhou ◽  
Xiaoliang Shi ◽  
Ahmed Mohamed Mahmoud Ibrahim

PurposeThis paper aims to investigate the friction noise properties of M50 matrix curved microporous channel composites filled with solid lubricant Sn-Ag-Cu (MS). Design/methodology/approachPure M50 (MA) and MS are prepared by selective laser melting and vacuum-pressure infiltration technology. The tribological and friction noise properties of MA and MS are tested through dry sliding friction and then the influential mechanism of surface wear sate on friction noise is investigated by analyzing the variation law of noise signals and the worn surface characteristics of MS. FindingsExperimental results show that the friction noise sound pressure level of MS is only 75.6 dB, and it mainly consists of low-frequency noise. The Sn-Ag-Cu improves the surface wear state, which reduces self-excited vibration of the interface caused by fluctuation of friction force, leading to the decrease of friction noise. Originality/valueThis investigation is meaningful to improve the tribological property and suppress the friction noise of M50 bearing steel.

2016 ◽  
Vol 26 (7) ◽  
pp. 2000-2012
Author(s):  
Jean-Philippe Brazier ◽  
Maxime Huet ◽  
Olivier Léon ◽  
Maxime Itasse

Purpose Unstable Kelvin-Helmholtz waves are suspected to be responsible for a large part of low-frequency noise radiation in high-speed jets. The purpose of this paper is to check the coherence of numerical and experimental data concerning this phenomenon, in the particular case of a cold subsonic jet. Design/methodology/approach In the present work, a cross-investigation of the near pressure field is performed on three different data sets: large-eddy simulation (LES) computations, parabolised stability equations (PSE) semi-modal computations and microphone measurements, in order to determine the local amplitudes of unstable waves. Findings The large coherent structures are found in both LES and experimental results and they are also in good agreement with direct semi-modal computations carried out with the PSE approach. Originality/value This work confirms that the unstable wave packets can be extracted from both LES and experimental results, provided that an appropriate modal decomposition is performed.


Vestnik MEI ◽  
2018 ◽  
Vol 5 (5) ◽  
pp. 120-127
Author(s):  
Mikhail D. Vorobyev ◽  
◽  
Dmitriy N. Yudaev ◽  
Andrey Yu. Zorin ◽  
◽  
...  

1999 ◽  
Author(s):  
Charles K. Birdsall ◽  
J. P. Varboncoeur ◽  
P. J. Christensen

2020 ◽  
Vol 19 (3-5) ◽  
pp. 191-206
Author(s):  
Trae L Jennette ◽  
Krish K Ahuja

This paper deals with the topic of upper surface blowing noise. Using a model-scale rectangular nozzle of an aspect ratio of 10 and a sharp trailing edge, detailed noise contours were acquired with and without a subsonic jet blowing over a flat surface to determine the noise source location as a function of frequency. Additionally, velocity scaling of the upper surface blowing noise was carried out. It was found that the upper surface blowing increases the noise significantly. This is a result of both the trailing edge noise and turbulence downstream of the trailing edge, referred to as wake noise in the paper. It was found that low-frequency noise with a peak Strouhal number of 0.02 originates from the trailing edge whereas the high-frequency noise with the peak in the vicinity of Strouhal number of 0.2 originates near the nozzle exit. Low frequency (low Strouhal number) follows a velocity scaling corresponding to a dipole source where as the high Strouhal numbers as quadrupole sources. The culmination of these two effects is a cardioid-shaped directivity pattern. On the shielded side, the most dominant noise sources were at the trailing edge and in the near wake. The trailing edge mounting geometry also created anomalous acoustic diffraction indicating that not only is the geometry of the edge itself important, but also all geometry near the trailing edge.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hai-Fei Zhu ◽  
Xiao-Wei Sun ◽  
Ting Song ◽  
Xiao-Dong Wen ◽  
Xi-Xuan Liu ◽  
...  

AbstractIn view of the influence of variability of low-frequency noise frequency on noise prevention in real life, we present a novel two-dimensional tunable phononic crystal plate which is consisted of lead columns deposited in a silicone rubber plate with periodic holes and calculate its bandgap characteristics by finite element method. The low-frequency bandgap mechanism of the designed model is discussed simultaneously. Accordingly, the influence of geometric parameters of the phononic crystal plate on the bandgap characteristics is analyzed and the bandgap adjustability under prestretch strain is further studied. Results show that the new designed phononic crystal plate has lower bandgap starting frequency and wider bandwidth than the traditional single-sided structure, which is due to the coupling between the resonance mode of the scatterer and the long traveling wave in the matrix with the introduction of periodic holes. Applying prestretch strain to the matrix can realize active realtime control of low-frequency bandgap under slight deformation and broaden the low-frequency bandgap, which can be explained as the multiple bands tend to be flattened due to the localization degree of unit cell vibration increases with the rise of prestrain. The presented structure improves the realtime adjustability of sound isolation and vibration reduction frequency for phononic crystal in complex acoustic vibration environments.


2021 ◽  
Vol 182 ◽  
pp. 108203
Author(s):  
Lígia T. Silva ◽  
Alda Magalhães ◽  
José Ferreira Silva ◽  
Fernando Fonseca

Measurement ◽  
2021 ◽  
pp. 109867
Author(s):  
Krzysztof ACHTENBERG ◽  
Janusz MIKOŁAJCZYK ◽  
Carmine CIOFI ◽  
Graziella SCANDURRA ◽  
Krystian MICHALCZEWSKI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document