Robust trajectory tracking control for parameter perturbation power cable mobile operation robot system

Author(s):  
Wei Jiang ◽  
Yu Yan ◽  
Lianqing Yu ◽  
Hong Jun Li ◽  
Lizhen Du ◽  
...  

Purpose In the high-altitude, high-voltage electromagnetic interference operation environment, due to the parameters perturbation for robot control model caused by uncertainties and disturbances, and with the poor effective of the conventional proportional–integral–derivative (PID) control to parameters perturbation system, the mathematical model of power cable live operation robot joint PID closed-loop control system is established. Design/methodology/approach The corresponding joint motion robust PID control method is also proposed based on Kharitonov theory, the system robust stability conditions including the sufficient and necessary conditions are deduced and obtained and the solving process of robust PID control parameters stability region is provided. Findings Finally, the simulation research on robot joint motion PID control system is also launched in MATLAB environment based on Kharitonov theory. The results show that the conventional PID control obtains better control effect only to nominal model but is ineffective to parameter perturbation system, while robust PID obtains sound control effect to parameter perturbation system. Compared with H8 robust PID, the Kharitonov robust PID has better control effect which meet the system design requirements of joint motor quickly response, high tracking accuracy and sound stability. Finally, the validity and engineering practicability are verified by 220-kV living replacing damper operation experiment. Originality/value This paper has described the development of a damper replacement power cable live maintenance robot experimental prototype, which greatly improves operation efficiency and deals with the safety problem of operation in a high-voltage environment. A general manipulator motion control model of the power cable robot is established; the Kharitonov theory-based parameter perturbation robust motion control method of damper replacement robot is also obtained. Through the simulation comparison, it is verified that the Kharitonov control has more superiority for dealing with the parameter perturbation systems under the premise of ensuring the stability motion. The field experiment has further confirmed the engineering practicability.

Author(s):  
Hong Jun Li ◽  
Wei Jiang ◽  
Dehua Zou ◽  
Yu Yan ◽  
An Zhang ◽  
...  

Purpose In the multi-splitting transmission lines extreme power environment of ultra-high voltage and strong electromagnetic interference, to improve the trajectory tracking and stability control performance of the robot manipulator when conduct electric power operation, and effectively reduce the influence of disturbance factors on the robot motion control, this paper aims to presents a robust trajectory tracking motion control method for power cable robot manipulators based on sliding mode variable structure control theory. Design/methodology/approach Through the layering of aerial-online-ground robot three-dimensional control architecture, the robot joint motion dynamic model has been built, and the motion control model of the N-degrees of freedom robot system has also been obtained. On this basis, the state space expression of joint motion control under disturbance and uncertainty has been also derived, and the manipulator sliding mode variable structure trajectory tracking control model has also been established. The influence of the perturbation control parameters on the robot motion control can be compensated by the back propagation neural network learning, the stability of the controller has been analyzed by using Lyapunov theory. Findings The robot has been tested on a analog line in the lab, the effectiveness of sliding mode variable structure control is verified by trajectory tracking simulation experiments of different typical signals with different methods. The field operation experiment further verifies the engineering practicability of the control method. At the same time, the control method has the remarkable characteristics of sound versatility, strong adaptability and easy expansion. Originality/value Three-dimensional control architecture of underground-online-aerial robots has been proposed for industrial field applications in the ubiquitous power internet of things environment (UPIOT). Starting from the robot joint motion, the dynamic equation of the robot joint motion and the state space expression of the robot control system have been established. Based on this, a robot closed-loop trajectory tracking control system has been designed. A robust trajectory tracking motion control method for robots based on sliding mode variable structure theory has been proposed, and a sliding mode control model for the robot has been constructed. The uncertain parameters in the control model have been compensated by the neural network in real-time, and the sliding mode robust control law of the robot manipulator has been solved and obtained. A suitable Lyapunov function has been selected to prove the stability of the system. This method enhances the expansibility of the robot control system and shortens the development cycle of the controller. The trajectory tracking simulation experiment of the robot manipulator proves that the sliding mode variable structure control can effectively restrain the influence of disturbance and uncertainty on the robot motion stability, and meet the design requirements of the control system with fast response, high tracking accuracy and sound stability. Finally, the engineering practicability and superiority of sliding mode variable structure control have been further verified by field operation experiments.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1051 ◽  
Author(s):  
Zhou ◽  
Chen ◽  
Zhou ◽  
Liu

Because the proportional–integral–derivative (PID) parameters selected by experience are random, the control effect of fuzzy PID cannot be optimized. In order to improve the accuracy and stability of robot motion control, an orthogonal-fuzzy PID intelligent control method is proposed. In this paper, the electric steering gear is used as the actuator, and the mathematical model of the servo motor joint drive system is established. The simulation analysis of the original control, PID control, fuzzy PID control, and orthogonal-fuzzy PID control of the manipulator joints in the Simulink software simulation environment and the motion control experiment of the manipulator show that using the orthogonal test method to adjust the PID parameters can quickly determine the appropriate PID parameters and greatly reduce the number of trials. The rise time, adjustment time, and overshoot of the system are significantly reduced by using fuzzy PID control, which can improve the adaptability of the system. By comparing and analyzing fuzzy PID and orthogonal-fuzzy PID control methods, it can be found that the system of orthogonal-fuzzy PID for optimal factor level combination (Kp = 0.1, Ki = 30 and Kd = 0.02) is the optimal system. The experiment results show that the orthogonal-fuzzy PID can further improve the accuracy of the system and reduce the oscillation process of the system near the steady state and make the motion more stable.


2012 ◽  
Vol 548 ◽  
pp. 848-852
Author(s):  
Wei Xin Wang ◽  
Wei Zhang

The paper analyse the two wheel differential robot motion control, and the membership function of affiliation between the amount of input and output was established.Then combine the incremental PID control algorithm with fuzzy control strategy, and it was used to the two wheel differential robot motion control model. By the MATLAB for simulation, get the control system response curve and achieve a satisfactory result.


2010 ◽  
Vol 139-141 ◽  
pp. 1945-1949
Author(s):  
Tian Pei Zhou ◽  
Wen Fang Huang

In the process of recycling chemical product in coking object, ammonia and tar were indispensable both metallurgy and agriculture, so the control of separation process for tar-ammonia was one of the most important control problems. Due to the density difference between the tar and ammonia was greater, easier to separate, the control method based on PID was used in field at present. But the control effect of traditional PID was not good because of environment change and fluctuation in material composition. Separation process for tar-ammonia was analyzed firstly, in view of the shortcoming of traditional PID control algorithm, single neuron PID control algorithm based on variable scale method was adopted through using optimization method. Detailed algorithm steps were designed and applied to tar-ammonia separation system. Simulation results show that by comparison with traditional PID algorithm, the algorithm have the following advantages: faster learning speed, shorter adjusted time and good convergence performance.


Author(s):  
Wei Jiang ◽  
Meng Huai Peng ◽  
Yu Yan ◽  
Gongping Wu ◽  
An Zhang ◽  
...  

Purpose In the extreme power environment of flexible transmission line, wind load, high voltage and strong electromagnetic interference, the motion performance of the robot manipulator is strongly affected by the extreme environment. Therefore, this study aims to improve the manipulator motion control performance of power cable maintenance robot and effectively reduce the influence of specific operation environment on the robot manipulator motion posture. Design/methodology/approach The mathematical model under three typical operation conditions, namely, flexible line, wind load and strong electromagnetic field have been established, correspondingly the mapping relationship between different environment parameters and robot operation conditions are also given. Based on the nonlinear approximation feature of neural network, a back propagation (BP) neural network is adopted to solve the posture control problems. The power cable line sag, robot tile angle caused by wind load and spatial field strength are the input signals of the BP network in the robot motion posture control method. Findings Through the training and learning of the BP network, the output control variables are used to compensate the actual robot operation posture. The simulation experiment verifies the effectiveness of the proposed algorithm, and compared with the conventional proportional integral differential (PID) control, the method has high real-time performance and sound stability. Finally, field operation experiments further validate the engineering feasibility of the control method, and at the same time, the proposed control method has the remarkable characteristics of sound universality, adaptability and easy expansion. Originality/value A multi-layer control architecture which is suitable for smart grid platform maintenance is proposed and a robot system platform for network operation and maintenance management is constructed. The human–machine–environment coordination and integration mode and intelligent power system management platform can be realized which greatly improves the intelligence of power system management. Mathematical models of the robot under three typical operation conditions of flexible wire wind load and strong electromagnetic field are established and the mapping relationship between different environmental parameters and the robot operation conditions is given. Through the non-linear approximation characteristics of BP network, the control variables of the robot joints can be obtained and the influence of extreme environment on the robot posture can be compensated. The simulation results of MATLAB show that the control algorithm can effectively restrain the influence of uncertain factors such as flexible environment, wind load and strong electromagnetic field on the robot posture. It satisfied the design requirements of fast response, high tracking accuracy and good stability of the control system. Field operation tests further verify the engineering practicability of the algorithm.


2012 ◽  
Vol 201-202 ◽  
pp. 1143-1146
Author(s):  
Li Yong Hu ◽  
Guo Sheng Feng ◽  
Su Mei Jia ◽  
Wei Zhang

In order to satisfy the demand of increasingly stringent emission regulations and enhance fuel economy and increase dynamic performance of vehicle diesel engine, the working parameters of electronic controlled diesel engine should be changed properly. An electromagnetic actuator controlled system was designed based on DSP56F807. The control strategy of fuzzy-PID and fuzzy control model for electro-magnetic actuator was established. The control effect of fuzzy-PID for electro-magnetic actuator and diesel engine was validated through experiment. Experimental results showed that good static and dynamic control effect can be obtained using fuzzy-PID control method.


2012 ◽  
Vol 546-547 ◽  
pp. 992-996
Author(s):  
Chun Fang Liu ◽  
Bin Zang ◽  
Tong Wang

The maglev system is a typical nonlinear system, it is difficult to get the best control effect only by nonlinear control method. At first, the maglev system is linearized in this paper, for the classic PID control magnetic levitation system which exists the contradiction between fast and overshoot .This paper adopts the nonlinear tracking-differentiator-based PID controller to control the maglev system. Finally simulation results show that the nonlinear PID controller has fast response speed, no overshoot, and strong robustness in controlling the maglev system.


Author(s):  
Serhat Aksungur ◽  
Muhammet Aydin ◽  
Oğuz Yakut

Purpose The purpose of this study is to design and manufacture a new remote center of motion (RCM) mechanism for use in laparoscopic surgical operations. In addition, obtaining the forward and inverse kinematic equations of the RCM mechanism and performing real-time position control with the Proportional–Integral–Derivative (PID) control method. Design/methodology/approach At the design stage, it is benefited from similar triangle rule. To obtain the kinematic equations in a simple way and facilitate control, two-fold displacement ratio is provided between the limbs where linear motion occurs. The rotation and displacement amounts required to move at the RCM point have been calculated by using the kinematic equations of the mechanism. Limb dimensions and motion limits are determined in the manner to avoid singularities and collisions. The x, y and z coordinates of the end effector have been defined as the reference point. Control of the mechanism was provided by PID control. To generate the user interface and control algorithm, MATLAB/Simulink real-time toolbox has been used. Four reference points were determined, control was performed and position error values were examined. MF634 Humusoft data acquisition card has been preferred to collect data from encoders. Findings A novel RCM mechanism has been designed and manufactured. Kinematic equations of this mechanism have been obtained. Position control of the cannula tip has been performed using PID control method for four different reference points. After settlement, maximum position error has been observed as 0.45 mm. Practical implications Structure of the designed mechanism is quite simple. Thus, costs are quite low. The operation area of the operator is widened by hanging the mechanism from the ceiling, so operational capability of health personnel is increasing. It helps to decrease the operation time and increase the success of the operation. Originality/value With this study, it is aimed to contribute to the literature by designing a new RCM mechanism. The rotation of the mechanism around the RCM point is provided by only one rotary motor, and the displacement of the RCM point in the vertical axis is provided by only one linear motor. The mechanism is also a surgical robot. The designed system is suitable for use in robot-assisted laparoscopic surgery in terms of maneuverability.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1780
Author(s):  
Danrui Ma ◽  
Mengxiao Song ◽  
Peichang Yu ◽  
Jie Li

Control of the maglev system is one of the most significant technologies of the maglev train. The common proportion integration differentiation (PID) method, which has fixed control parameters, ignores the non-linearity and uncertainty of the model in the design process. In the actual process, due to environmental changes and interference, the inherent parameters of the system will drift significantly. The traditional PID controller has difficulty meeting the control requirements, and will have poor control effect in the actual working environment. Therefore, a radial basis function (RBF)-PID controller is designed in this article, which can use the information from the levitation system identified by the RBF network to adjust the parameters of the controller in real time. Compared with the traditional PID control method, it is shown that the RBF-PID method can improve the control performance of the system through simulation and experiment.


2014 ◽  
Vol 701-702 ◽  
pp. 812-815
Author(s):  
Lu Wang ◽  
You Zhi Ren ◽  
Hui Liu ◽  
Ya Wei Yang ◽  
Qian Zeng

This paper analyzes the characteristics of the PLC and MATLAB, describes the OPC technology and introduces the system structures and procedures which uses the OPC technology to achieve the exchange of data between PLC and MATLAB system. For example, in the plastic tank temperature control system, it mentions the BP neural network PID control algorithm which is applied to the PLC control system by using the MATLAB intelligent controller. The results show that this control method is simple and the control effect is good, much better than the traditional PID control.


Sign in / Sign up

Export Citation Format

Share Document