Smooth transition adaptive hybrid impedance control for connector assembly

Author(s):  
Jun Wu ◽  
Fenglei Ni ◽  
Yuanfei Zhang ◽  
Shaowei Fan ◽  
Qi Zhang ◽  
...  

Purpose This paper aims to present a smooth transition adaptive hybrid impedance control for compliant connector assembly. Design/methodology/approach The dynamics of the manipulator is firstly presented with linear property. The controller used in connector assembly is inspired by human operation habits in similar tasks. The hybrid impedance control is adopted to apply force in the assembly direction and provide compliance in rest directions. The reference trajectory is implemented with an adaptive controller. Event-based switching strategy is conducted for a smooth transition from unconstrained to constrained space. Findings The method can ensure both ideal compliance behaviour with dynamic uncertainty and a smooth transition from unconstrained to constrained space. Also, the method can ensure compliant connector assembly with a good tolerance to the target estimation error. Practical implications The method can be applied in the connector assembly by “pushing” operation. The controller devotes efforts on force tracking and smooth transition, having potential applications in contact tasks in delicate environment. Originality/value As far as the authors know, the paper is original in providing a uniform controller for improving force and position control performance in both unconstrained and constrained space with dynamic uncertainty. The proposed controller can ensure a smooth transition by only adjusting parameters.

Author(s):  
Hong Liu ◽  
Jun Wu ◽  
Shaowei Fan ◽  
Minghe Jin ◽  
Chunguang Fan

Purpose This paper aims to present a pose correction method based on integrated virtual impedance control for avoiding collision and reducing impact. Design/methodology/approach The authors first constructed the artificial potential field (APF) considering the geometric characteristics of the end-effector. The characteristics of the proposed field were analyzed considering the position and orientation misalignment. Then, an integrated virtual impedance control was proposed by adding resultant virtual repulsive force into traditional impedance control. Finally, the authors modified a correction trajectory for avoiding collision and reducing impact with virtual force and contact force. Findings The APF the authors constructed can get rid of a local minimum. Comparing with linear correction, this method is able to avoid collision effectively. When the capturing target has intrinsic estimation error, the pose correction can ensure smooth transitions among different stages. Practical implications This method can be implemented on a manipulator with inner position control. It can be applied to an industrial robot with applications on robotic assembly for achieving a softer and smoother process. The method can also be expanded to the kind of claw-shaped end-effectors for capturing target. Originality value As the authors know, it is the first time that the characteristics of the end-effector are considered for avoiding collision in capturing application. The proposed integrated virtual impedance control can provide smooth transitions among different stages without switching different force/position controllers.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Javad Fotuhi ◽  
Zafer Bingul

Purpose This paper aims to develope a novel fractional hybrid impedance control (FHIC) approach for high-sensitive contact stress force tracking control of the series elastic muscle-tendon actuator (SEM-TA) in uncertain environments. Design/methodology/approach In three different cases, the fractional parameters of the FHIC were optimized with the particle swarm optimization algorithm. Its adaptability to the pressure of the sole of the foot on real environments such as grass (soft), carpet (medium) and solid floors (hard) is far superior to traditional impedance control. The main aim of this paper is to derive the dynamic simulation models of the SEM-TA, to develop a control architecture allowing for high-sensitive contact stress force control in three cases and to verify the simulation models and the proposed controller with experimental results. The performance of the optimized controllers was evaluated according to these parameters, namely, maximum overshoot, steady-state error, settling time and root mean squared errors of the positions. Moreover, the frequency robustness analysis of the controllers was made in three cases. Findings Different simulations and experimental results were conducted to verify the control performance of the controllers. According to the comparative results of the performance, the responses of the proposed controller in simulation and experimental works are very similar. Originality/value Origin approach and origin experiment.


2021 ◽  
Vol 336 ◽  
pp. 03005
Author(s):  
Xinchao Sun ◽  
Lianyu Zhao ◽  
Zhenzhong Liu

As a simple and effective force tracking control method, impedance control is widely used in robot contact operations. The internal control parameters of traditional impedance control are constant and cannot be corrected in real time, which will lead to instability of control system or large force tracking error. Therefore, it is difficult to be applied to the occasions requiring higher force accuracy, such as robotic medical surgery, robotic space operation and so on. To solve this problem, this paper proposes a model reference adaptive variable impedance control method, which can realize force tracking control by adjusting internal impedance control parameters in real time and generating a reference trajectory at the same time. The simulation experiment proves that compared with the traditional impedance control method, this method has faster force tracking speed and smaller force tracking error. It is a better force tracking control method.


Robotica ◽  
2019 ◽  
Vol 38 (9) ◽  
pp. 1642-1664 ◽  
Author(s):  
Ali Fayazi ◽  
Naser Pariz ◽  
Ali Karimpour ◽  
V. Feliu-Batlle ◽  
S. Hassan HosseinNia

SUMMARYThis paper proposes an adaptive robust impedance control for a single-link flexible arm when it encounters an environment at an unknown intermediate point. First, the intermediate collision point is estimated using a collision detection algorithm. The controller, then, switches from free to constrained motion mode. In the unconstrained motion mode, the exerted force to environment is nearly zero. Thus, the reference trajectory is a prescribed desired trajectory in position control. In the constrained motion mode, the reference trajectory is determined by the desired target dynamic impedance. The simulation results demonstrate the efficiency of proposed control scheme.


Robotica ◽  
2014 ◽  
Vol 34 (5) ◽  
pp. 1168-1185 ◽  
Author(s):  
Ting Zhang ◽  
Li Jiang ◽  
Shaowei Fan ◽  
Xinyu Wu ◽  
Wei Feng

SUMMARYThis paper presents adaptive impedance controllers with adaptive sliding mode friction compensation for anthropomorphic artificial hand. A five-fingered anthropomorphic artificial hand with multi-sensory and Field-Programmable Gate Arra (FPGA)-based control hardware and software architecture is designed to fulfill the requirements of the grasping force controller. In order to improve the force-tracking precision, the indirect adaptive algorithm was applied to estimate the parameters of the environment. The generalized momentum-based disturbance observer was applied to estimate the contact force from the torque sensor. Based on the sensors of the finger, an adaptive sliding mode friction compensation algorithm was utilized to improve the accuracy of the position control. The performances of the force-tracking impedance controller and position-based joint impedance control for the five-fingered anthropomorphic artificial hand are analyzed and compared in this paper. Furthermore, the performances of the force-tracking impedance controller with environmental parameters adaptive estimation and without environmental parameters estimation are analyzed and compared. Experimental results prove that accurate force-tracking and stable torque/force response under uncertain environments of unknown stiffness and position can be achieved with the proposed adaptive force-tracking impedance controller with friction compensation on five-finger artificial hand.


Robotica ◽  
2018 ◽  
Vol 36 (12) ◽  
pp. 1920-1942 ◽  
Author(s):  
Ali Fayazi ◽  
Naser Pariz ◽  
Ali Karimpour ◽  
Seyed Hassan Hosseinnia

SUMMARYThis paper presents a fractional-order sliding mode control scheme equipped with a disturbance observer for robust impedance control of a single-link flexible robot arm when it comes into contact with an unknown environment. In this research, the impedance control problem is studied for both unconstrained and constrained maneuvers. The proposed control strategy is robust with respect to the changes of the environment parameters (such as stiffness and damping coefficient), the unknown Coulomb friction disturbances, payload, and viscous friction variations. The proposed control scheme is also valid for both unconstrained and constrained motions. Our novel approach automatically switches from the free to the constrained motion mode using a simple algorithm of contact detection. In this regard, an impedance control scheme is proposed with the inner loop position control. This means that in the free motion, the applied force to the environment is zero and the reference trajectory for the inner loop position control is the desired trajectory. However, in the constrained motion the reference trajectory for the inner loop is determined by the desired impedance dynamics. Stability of the closed loop control system is proved by Lyapunov theory. Several numerical simulations are carried out to indicate the capability and the effectiveness of the proposed control scheme.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jafar Tavoosi

PurposeIn this paper, an innovative hybrid intelligent position control method for vertical take-off and landing (VTOL) tiltrotor unmanned aerial vehicle (UAV) is proposed. So the more accurate the reference position signals tracking, the proposed control system will be better.Design/methodology/approachIn the proposed method, for the vertical flight mode, first the model reference adaptive controller (MRAC) operates and for the horizontal flight, the model predictive control (MPC) will operate. Since the linear model is used for both of these controllers and naturally has an error compared to the real nonlinear model, a neural network is used to compensate for them. So the main novelties of this paper are a new hybrid control design (MRAC & MPC) and a neural network-based compensator for tiltrotor UAV.FindingsThe proper performance of the proposed control method in the simulation results is clear. Also the results showed that the role of compensator is very important and necessary, especially in extreme speed wind conditions and uncertain parameters.Originality/valueNovel hybrid control method. 10;-New method to use neural network as compensator in an UAV.


Author(s):  
Hongli Cao ◽  
Ye He ◽  
Xiaoan Chen ◽  
Xue Zhao

Purpose The purpose of this paper is to take transient contact force response, overshoots and steady-state force tracking error problems into account to form an excellent force controller. Design/methodology/approach The basic impedance function with a pre-PID tuner is designed to improve the force response. A dynamic adaptive adjustment function that combines the advantages of hybrid impedance and adaptive hybrid impedance control is presented to achieve both force overshoots suppressing and tracking ability. Findings The introduced pre-PID tuner impedance function can achieve more than the pure impedance function in aspects of converging to the desired value and reducing the force overshoots. The performance of force overshoots suppression and force tracking error are maintained by introducing the dynamic adaptive sigma adjustment function. The simulation and experimental results both show the achieved control performance by comparing with the previous control methods. Practical implications The implementation of the controller is easy and convenient in practical manufacture scenes that require force control using industrial robots. Originality/value A superior robot controller adapting to a variety of complex tasks owing to the following characteristics: maintenance of high-accuracy position tracking capability in free-space (basic capabilities of modern industrial robots); maintenance of high speed, stability and smooth contact performance in collision stage; and presentation of high-precision force tracking capability in steady contact.


2011 ◽  
Vol 328-330 ◽  
pp. 2117-2120
Author(s):  
Er Chao Li ◽  
Zhan Ming Li

In order to realize precise contact tasks with an unknown environment, robotic force controllers have to adapt themselves to the unknown environment. In this paper, an effective controller for robot contact tasks is proposed using sliding mode switching surface as a sole fuzzy input variable for substituting the feedback controller in the model reference adaptive control (MRAC), the fuzzy force controller determines the adjustment to the position control loop, adjust the fuzzy controller parameters according to the difference between the actual and desired force responses. There is a sole fuzzy input variable in fuzzy logical controller(FLC), the total number of rules is greatly reduced compared to conventional FLC, hence generations and tuning of controller are more simple and easy. Simulations prove that the excellent adaptability as well as high precision is obtained by the proposed strategy.


Author(s):  
Peng Wang ◽  
Chunxiao Song ◽  
Xiaoqiang Li ◽  
Peng Luo

Purpose The gait planning and control of quadruped crawling robot affect the stability of the robot walking on a slope. The control includes the position control in the swing phase, the force control in the support phase and the switching control in the force/position switching. To improve the passing ability of quadruped crawling robot on a slope, this paper aims to propose a soft control strategy. Design/methodology/approach The strategy adopts the statically stable crawling gait as the main gait. As the robot moves forward, the position/force section switching control is adopted. When the foot does not touch the ground, the joint position control based on the variable speed PID is performed. When the foot touches the ground, the position-based impedance control is performed, and a fuzzy multi-model switching control based on friction compensation is proposed to achieve smooth switching of force and position. Findings The proposed method offers a solution for stable passage in slope environment. The quadruped crawling robot can realize smooth switching of force/position, precise positioning in the swing process and soft control of force in the supporting phase. This fact is verified by simulation and test. Originality/value The method presented in this paper takes advantage of minimal tracking errors and minimal jitters. Simulations and tests were performed to evaluate the performance.


Sign in / Sign up

Export Citation Format

Share Document