Smooth adaptive hybrid impedance control for robotic contact force tracking in dynamic environments

Author(s):  
Hongli Cao ◽  
Ye He ◽  
Xiaoan Chen ◽  
Xue Zhao

Purpose The purpose of this paper is to take transient contact force response, overshoots and steady-state force tracking error problems into account to form an excellent force controller. Design/methodology/approach The basic impedance function with a pre-PID tuner is designed to improve the force response. A dynamic adaptive adjustment function that combines the advantages of hybrid impedance and adaptive hybrid impedance control is presented to achieve both force overshoots suppressing and tracking ability. Findings The introduced pre-PID tuner impedance function can achieve more than the pure impedance function in aspects of converging to the desired value and reducing the force overshoots. The performance of force overshoots suppression and force tracking error are maintained by introducing the dynamic adaptive sigma adjustment function. The simulation and experimental results both show the achieved control performance by comparing with the previous control methods. Practical implications The implementation of the controller is easy and convenient in practical manufacture scenes that require force control using industrial robots. Originality/value A superior robot controller adapting to a variety of complex tasks owing to the following characteristics: maintenance of high-accuracy position tracking capability in free-space (basic capabilities of modern industrial robots); maintenance of high speed, stability and smooth contact performance in collision stage; and presentation of high-precision force tracking capability in steady contact.

Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 59
Author(s):  
Junjie Dai ◽  
Chin-Yin Chen ◽  
Renfeng Zhu ◽  
Guilin Yang ◽  
Chongchong Wang ◽  
...  

Installing force-controlled end-effectors on the end of industrial robots has become the mainstream method for robot force control. Additionally, during the polishing process, contact force stability has an important impact on polishing quality. However, due to the difference between the robot structure and the force-controlled end-effector, in the polishing operation, direct force control will have impact during the transition from noncontact to contact between the tool and the workpiece. Although impedance control can solve this problem, industrial robots still produce vibrations with high inertia and low stiffness. Therefore, this research proposes an impedance matching control strategy based on traditional direct force control and impedance control methods to improve this problem. This method’s primary purpose is to avoid force vibration in the contact phase and maintain force–tracking performance during the dynamic tracking phase. Simulation and experimental results show that this method can smoothly track the contact force and reduce vibration compared with traditional force control and impedance control.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Javad Fotuhi ◽  
Zafer Bingul

Purpose This paper aims to develope a novel fractional hybrid impedance control (FHIC) approach for high-sensitive contact stress force tracking control of the series elastic muscle-tendon actuator (SEM-TA) in uncertain environments. Design/methodology/approach In three different cases, the fractional parameters of the FHIC were optimized with the particle swarm optimization algorithm. Its adaptability to the pressure of the sole of the foot on real environments such as grass (soft), carpet (medium) and solid floors (hard) is far superior to traditional impedance control. The main aim of this paper is to derive the dynamic simulation models of the SEM-TA, to develop a control architecture allowing for high-sensitive contact stress force control in three cases and to verify the simulation models and the proposed controller with experimental results. The performance of the optimized controllers was evaluated according to these parameters, namely, maximum overshoot, steady-state error, settling time and root mean squared errors of the positions. Moreover, the frequency robustness analysis of the controllers was made in three cases. Findings Different simulations and experimental results were conducted to verify the control performance of the controllers. According to the comparative results of the performance, the responses of the proposed controller in simulation and experimental works are very similar. Originality/value Origin approach and origin experiment.


2021 ◽  
Vol 336 ◽  
pp. 03005
Author(s):  
Xinchao Sun ◽  
Lianyu Zhao ◽  
Zhenzhong Liu

As a simple and effective force tracking control method, impedance control is widely used in robot contact operations. The internal control parameters of traditional impedance control are constant and cannot be corrected in real time, which will lead to instability of control system or large force tracking error. Therefore, it is difficult to be applied to the occasions requiring higher force accuracy, such as robotic medical surgery, robotic space operation and so on. To solve this problem, this paper proposes a model reference adaptive variable impedance control method, which can realize force tracking control by adjusting internal impedance control parameters in real time and generating a reference trajectory at the same time. The simulation experiment proves that compared with the traditional impedance control method, this method has faster force tracking speed and smaller force tracking error. It is a better force tracking control method.


Author(s):  
Jun Wu ◽  
Fenglei Ni ◽  
Yuanfei Zhang ◽  
Shaowei Fan ◽  
Qi Zhang ◽  
...  

Purpose This paper aims to present a smooth transition adaptive hybrid impedance control for compliant connector assembly. Design/methodology/approach The dynamics of the manipulator is firstly presented with linear property. The controller used in connector assembly is inspired by human operation habits in similar tasks. The hybrid impedance control is adopted to apply force in the assembly direction and provide compliance in rest directions. The reference trajectory is implemented with an adaptive controller. Event-based switching strategy is conducted for a smooth transition from unconstrained to constrained space. Findings The method can ensure both ideal compliance behaviour with dynamic uncertainty and a smooth transition from unconstrained to constrained space. Also, the method can ensure compliant connector assembly with a good tolerance to the target estimation error. Practical implications The method can be applied in the connector assembly by “pushing” operation. The controller devotes efforts on force tracking and smooth transition, having potential applications in contact tasks in delicate environment. Originality/value As far as the authors know, the paper is original in providing a uniform controller for improving force and position control performance in both unconstrained and constrained space with dynamic uncertainty. The proposed controller can ensure a smooth transition by only adjusting parameters.


Author(s):  
Bo Zeng ◽  
Shaowei Fan ◽  
Li Jiang ◽  
Hong Liu

Purpose This paper aims to present the design and experiment of a modular multisensory prosthetic hand for applications. Design and experiment of a modular multisensory hand for prosthetic applications. Design/methodology/approach This paper reveals more details focusing on the appearance, mechanism design, electrical design and control of the prosthetic hand considering anthropomorphism, dexterity, sensing and controllability. The finger is internally integrated with the actuator, the transmission mechanism, the sensors and the controller as a modular unit. Integrated with multiple sensors, the prosthetic hand can not only perceive the position, the contact force and the temperature of the environment like a human hand but also provide the foundation for the practical control. Findings The experiments show that the prosthetic hand can accurately control the contact force to achieve stable grasps based on the sensors feedback and a simple and effective force-tracking impedance control algorithm. In addition, the experiments based on the cosmesis validate not only the cosmesis functionality but also the control performance for a prosthesis–cosmesis system. Practical implications Because of the small size, low weight, high integration, modularity and controllability, the prosthetic hand is easily applied to upper-limb amputees. Meanwhile, the finger as a modular unit is easy to be fixed, maintained and applied to a partial upper-limb amputee. Originality/value Each modular finger of the prosthetic hand integrated with the actuator, the transmission mechanism, the sensors and the controller as a whole can independently control the position and the force. The cosmetic glove design can provide pretty appearance without compromising the control performance.


Author(s):  
Loris Roveda ◽  
Dario Piga

AbstractIndustrial robots are increasingly used in highly flexible interaction tasks, where the intrinsic variability makes difficult to pre-program the manipulator for all the different scenarios. In such applications, interaction environments are commonly (partially) unknown to the robot, requiring the implemented controllers to take in charge for the stability of the interaction. While standard controllers are sensor-based, there is a growing need to make sensorless robots (i.e., most of the commercial robots are not equipped with force/torque sensors) able to sense the environment, properly reacting to the established interaction. This paper proposes a new methodology to sensorless force control manipulators. On the basis of sensorless Cartesian impedance control, an Extended Kalman Filter (EKF) is designed to estimate the interaction exchanged between the robot and the environment. Such an estimation is then used in order to close a robust high-performance force loop, designed exploiting a variable impedance control and a State Dependent Riccati Equation (SDRE) force controller. The described approach has been validated in simulations. A Franka EMIKA panda robot has been considered as a test platform. A probing task involving different materials (i.e., with different stiffness properties) has been considered to show the capabilities of the developed EKF (able to converge with limited errors) and controller (preserving stability and avoiding overshoots). The proposed controller has been compared with an LQR controller to show its improved performance.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Jinzhu Peng ◽  
Zeqi Yang ◽  
Tianlei Ma

In this paper, an adaptive Jacobian and neural network based position/force tracking impedance control scheme is proposed for controlling robotic systems with uncertainties and external disturbances. To achieve precise force control performance indirectly by using the position tracking, the control scheme is divided into two parts: the outer-loop force impedance control and the inner-loop position tracking control. In the outer-loop, an improved impedance controller, which combines the traditional impedance relationship with the PID-like scheme, is designed to eliminate the force tracking error quickly and to reduce the force overshoot effectively. In this way, the satisfied force tracking performance can be achieved when the manipulator contacts with environment. In the inner-loop, an adaptive Jacobian method is proposed to estimate the velocities and interaction torques of the end-effector due to the system kinematical uncertainties, and the system dynamical uncertainties and the uncertain term of adaptive Jacobian are compensated by an adaptive radial basis function neural network (RBFNN). Then, a robust term is designed to compensate the external disturbances and the approximation errors of RBFNN. In this way, the command position trajectories generated from the outer-loop force impedance controller can be then tracked so that the contact force tracking performance can be achieved indirectly in the forced direction. Based on the Lyapunov stability theorem, it is proved that all the signals in closed-loop system are bounded and the position and velocity errors are asymptotic convergence to zero. Finally, the validity of the control scheme is shown by computer simulation on a two-link robotic manipulator.


Author(s):  
Jeroen De Backer ◽  
Gunnar Bolmsjö

Purpose – This paper aims to present a deflection model to improve positional accuracy of industrial robots. Earlier studies have demonstrated the lack of accuracy of heavy-duty robots when exposed to high external forces. One application where the robot is pushed to its limits in terms of forces is friction stir welding (FSW). This process requires the robot to deliver forces of several kilonewtons causing deflections in the robot joints. Especially for robots with serial kinematics, these deflections will result in significant tool deviations, leading to inferior weld quality. Design/methodology/approach – This paper presents a kinematic deflection model, assuming a rigid link and flexible joint serial kinematics robot. As robotic FSW is a process which involves high external loads and a constant welding speed of usually below 50 mm/s, many of the dynamic effects are negligible. The model uses force feedback from a force sensor, embedded on the robot, and predicts the tool deviation, based on the measured external forces. The deviation is fed back to the robot controller and used for online path compensation. Findings – The model is verified by subjecting an FSW tool to an external load and moving it along a path, with and without deviation compensation. The measured tool deviation with compensation was within the allowable tolerance for FSW. Practical implications – The model can be applied to other robots with a force sensor. Originality/value – The presented deflection model is based on force feedback and can predict and compensate tool deviations online.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Megha G. Krishnan ◽  
Abhilash T. Vijayan ◽  
Ashok S.

Purpose Real-time implementation of sophisticated algorithms on robotic systems demands a rewarding interface between hardware and software components. Individual robot manufacturers have dedicated controllers and languages. However, robot operation would require either the knowledge of additional software or expensive add-on installations for effective communication between the robot controller and the computation software. This paper aims to present a novel method of interfacing the commercial robot controllers with most widely used simulation platform, e.g. MATLAB in real-time with a demonstration of visual predictive controller. Design/methodology/approach A remote personal computer (PC), running MATLAB, is connected with the IRC5 controller of an ABB robotic arm through the File Transfer Protocol (FTP). FTP server on the IRC5 responds to a request from an FTP client (MATLAB) on a remote computer. MATLAB provides the basic platform for programming and control algorithm development. The controlled output is transferred to the robot controller through Ethernet port as files and, thereby, the proposed scheme ensures connection and control of the robot using the control algorithms developed by the researchers without the additional cost of buying add-on packages or mastering vendor-specific programming languages. Findings New control strategies and contrivances can be developed with numerous conditions and constraints in simulation platforms. When the results are to be implemented in real-time systems, the proposed method helps to establish a simple, fast and cost-effective communication with commercial robot controllers for validating the real-time performance of the developed control algorithm. Practical implications The proposed method is used for real-time implementation of visual servo control with predictive controller, for accurate pick-and-place application with different initial conditions. The same strategy has been proven effective in supervisory control using two cameras and artificial neural network-based visual control of robotic manipulators. Originality/value This paper elaborates a real-time example using visual servoing for researchers working with industrial robots, enabling them to understand and explore the possibilities of robot communication.


Sign in / Sign up

Export Citation Format

Share Document