Novel fractional hybrid impedance control of series elastic muscle-tendon actuator

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Javad Fotuhi ◽  
Zafer Bingul

Purpose This paper aims to develope a novel fractional hybrid impedance control (FHIC) approach for high-sensitive contact stress force tracking control of the series elastic muscle-tendon actuator (SEM-TA) in uncertain environments. Design/methodology/approach In three different cases, the fractional parameters of the FHIC were optimized with the particle swarm optimization algorithm. Its adaptability to the pressure of the sole of the foot on real environments such as grass (soft), carpet (medium) and solid floors (hard) is far superior to traditional impedance control. The main aim of this paper is to derive the dynamic simulation models of the SEM-TA, to develop a control architecture allowing for high-sensitive contact stress force control in three cases and to verify the simulation models and the proposed controller with experimental results. The performance of the optimized controllers was evaluated according to these parameters, namely, maximum overshoot, steady-state error, settling time and root mean squared errors of the positions. Moreover, the frequency robustness analysis of the controllers was made in three cases. Findings Different simulations and experimental results were conducted to verify the control performance of the controllers. According to the comparative results of the performance, the responses of the proposed controller in simulation and experimental works are very similar. Originality/value Origin approach and origin experiment.

Author(s):  
Jun Wu ◽  
Fenglei Ni ◽  
Yuanfei Zhang ◽  
Shaowei Fan ◽  
Qi Zhang ◽  
...  

Purpose This paper aims to present a smooth transition adaptive hybrid impedance control for compliant connector assembly. Design/methodology/approach The dynamics of the manipulator is firstly presented with linear property. The controller used in connector assembly is inspired by human operation habits in similar tasks. The hybrid impedance control is adopted to apply force in the assembly direction and provide compliance in rest directions. The reference trajectory is implemented with an adaptive controller. Event-based switching strategy is conducted for a smooth transition from unconstrained to constrained space. Findings The method can ensure both ideal compliance behaviour with dynamic uncertainty and a smooth transition from unconstrained to constrained space. Also, the method can ensure compliant connector assembly with a good tolerance to the target estimation error. Practical implications The method can be applied in the connector assembly by “pushing” operation. The controller devotes efforts on force tracking and smooth transition, having potential applications in contact tasks in delicate environment. Originality/value As far as the authors know, the paper is original in providing a uniform controller for improving force and position control performance in both unconstrained and constrained space with dynamic uncertainty. The proposed controller can ensure a smooth transition by only adjusting parameters.


2017 ◽  
Vol 37 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Ningbo Yu ◽  
Wulin Zou

Purpose This paper aims to present an impedance control method with mixed H2/H∞ synthesis and relaxed passivity for a cable-driven series elastic actuator to be applied for physical human–robot interaction. Design/methodology/approach To shape the system’s impedance to match a desired dynamic model, the impedance control problem was reformulated into an impedance matching structure. The desired competing performance requirements as well as constraints from the physical system can be characterized with weighting functions for respective signals. Considering the frequency properties of human movements, the passivity constraint for stable human–robot interaction, which is required on the entire frequency spectrum and may bring conservative solutions, has been relaxed in such a way that it only restrains the low frequency band. Thus, impedance control became a mixed H2/H∞ synthesis problem, and a dynamic output feedback controller can be obtained. Findings The proposed impedance control strategy has been tested for various desired impedance with both simulation and experiments on the cable-driven series elastic actuator platform. The actual interaction torque tracked well the desired torque within the desired norm bounds, and the control input was regulated below the motor velocity limit. The closed loop system can guarantee relaxed passivity at low frequency. Both simulation and experimental results have validated the feasibility and efficacy of the proposed method. Originality/value This impedance control strategy with mixed H2/H∞ synthesis and relaxed passivity provides a novel, effective and less conservative method for physical human–robot interaction control.


Author(s):  
Hongli Cao ◽  
Ye He ◽  
Xiaoan Chen ◽  
Xue Zhao

Purpose The purpose of this paper is to take transient contact force response, overshoots and steady-state force tracking error problems into account to form an excellent force controller. Design/methodology/approach The basic impedance function with a pre-PID tuner is designed to improve the force response. A dynamic adaptive adjustment function that combines the advantages of hybrid impedance and adaptive hybrid impedance control is presented to achieve both force overshoots suppressing and tracking ability. Findings The introduced pre-PID tuner impedance function can achieve more than the pure impedance function in aspects of converging to the desired value and reducing the force overshoots. The performance of force overshoots suppression and force tracking error are maintained by introducing the dynamic adaptive sigma adjustment function. The simulation and experimental results both show the achieved control performance by comparing with the previous control methods. Practical implications The implementation of the controller is easy and convenient in practical manufacture scenes that require force control using industrial robots. Originality/value A superior robot controller adapting to a variety of complex tasks owing to the following characteristics: maintenance of high-accuracy position tracking capability in free-space (basic capabilities of modern industrial robots); maintenance of high speed, stability and smooth contact performance in collision stage; and presentation of high-precision force tracking capability in steady contact.


Author(s):  
Oladayo S Ajani ◽  
Samy FM Assal

Recently, people with upper arm disabilities due to neurological disorders, stroke or old age are receiving robotic assistance to perform several activities such as shaving, eating, brushing and drinking. Although the full potential of robotic assistance lies in the use of fully autonomous robotic systems, these systems are limited in design due to the complexities and the associated risks. Hence, rather than the shared controlled or active robotic systems used for such tasks around the head, an adaptive compliance control scheme-based autonomous robotic system for beard shaving assistance is proposed. The system includes an autonomous online face detection and tracking as well as selected geometrical features-based beard region estimation using the Kinect RGB-D camera. Online trajectory planning for achieving the shaving task is enabled; with the capability of online re-planning trajectories in case of unintended head pose movement and occlusion. Based on the dynamics of the UR-10 6-DOF manipulator using ADAMS and MATLAB, an adaptive force tracking impedance controller whose parameters are tuned using Genetic Algorithm (GA) with force/torque constraints is developed. This controller can regulate the contact force under head pose changing and varying shaving region stiffness by adjusting the target stiffness of the controller. Simulation results demonstrate the system capability to achieve beard shaving autonomously with varying environmental parameters that can be extended for achieving other tasks around the head such as feeding, drinking and brushing.


Author(s):  
Paul Ranson ◽  
Daniel Guttentag

Purpose This study aimed to investigate whether increasing the social presence within an Airbnb lodging environment could nudge guests toward altruistic cleaning behaviors. Design/methodology/approach The study was based around a theoretical framework combining the social-market versus money-market relationship model, nudge theory and social presence theory. A series of three field experiments were conducted, in which social presence was manipulated to test its impact on guest cleaning behaviors prior to departure. Findings The experimental results confirmed the underlying hypothesis that an Airbnb listing’s enhanced social presence can subtly induce guests to help clean their rental units prior to departure. Originality/value This study is the first to examine behavioral nudging in an Airbnb context. It is also one of the first field experiments involving Airbnb. The study findings offer clear theoretical and practical implications.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 59
Author(s):  
Junjie Dai ◽  
Chin-Yin Chen ◽  
Renfeng Zhu ◽  
Guilin Yang ◽  
Chongchong Wang ◽  
...  

Installing force-controlled end-effectors on the end of industrial robots has become the mainstream method for robot force control. Additionally, during the polishing process, contact force stability has an important impact on polishing quality. However, due to the difference between the robot structure and the force-controlled end-effector, in the polishing operation, direct force control will have impact during the transition from noncontact to contact between the tool and the workpiece. Although impedance control can solve this problem, industrial robots still produce vibrations with high inertia and low stiffness. Therefore, this research proposes an impedance matching control strategy based on traditional direct force control and impedance control methods to improve this problem. This method’s primary purpose is to avoid force vibration in the contact phase and maintain force–tracking performance during the dynamic tracking phase. Simulation and experimental results show that this method can smoothly track the contact force and reduce vibration compared with traditional force control and impedance control.


2015 ◽  
Vol 26 (5) ◽  
pp. 632-659 ◽  
Author(s):  
Abdullah A Alabdulkarim ◽  
Peter Ball ◽  
Ashutosh Tiwari

Purpose – Asset management has recently gained significance due to emerging business models such as Product Service Systems where the sale of asset use, rather than the sale of the asset itself, is applied. This leaves the responsibility of the maintenance tasks to fall on the shoulders of the manufacturer/supplier to provide high asset availability. The use of asset monitoring assists in providing high availability but the level of monitoring and maintenance needs to be assessed for cost effectiveness. There is a lack of available tools and understanding of their value in assessing monitoring levels. The paper aims to discuss these issues. Design/methodology/approach – This research aims to develop a dynamic modelling approach using Discrete Event Simulation (DES) to assess such maintenance systems in order to provide a better understanding of the behaviour of complex maintenance operations. Interviews were conducted and literature was analysed to gather modelling requirements. Generic models were created, followed by simulation models, to examine how maintenance operation systems behave regarding different levels of asset monitoring. Findings – This research indicates that DES discerns varying levels of complexity of maintenance operations but that more sophisticated asset monitoring levels will not necessarily result in a higher asset performance. The paper shows that it is possible to assess the impact of monitoring levels as well as make other changes to system operation that may be more or less effective. Practical implications – The proposed tool supports the maintenance operations decision makers to select the appropriate asset monitoring level that suits their operational needs. Originality/value – A novel DES approach was developed to assess asset monitoring levels for maintenance operations. In applying this quantitative approach, it was demonstrated that higher asset monitoring levels do not necessarily result in higher asset availability. The work provides a means of evaluating the constraints in the system that an asset is part of rather than focusing on the asset in isolation.


2017 ◽  
Vol 34 (5) ◽  
pp. 1485-1500
Author(s):  
Leifur Leifsson ◽  
Slawomir Koziel

Purpose The purpose of this paper is to reduce the overall computational time of aerodynamic shape optimization that involves accurate high-fidelity simulation models. Design/methodology/approach The proposed approach is based on the surrogate-based optimization paradigm. In particular, multi-fidelity surrogate models are used in the optimization process in place of the computationally expensive high-fidelity model. The multi-fidelity surrogate is constructed using physics-based low-fidelity models and a proper correction. This work introduces a novel correction methodology – referred to as the adaptive response prediction (ARP). The ARP technique corrects the low-fidelity model response, represented by the airfoil pressure distribution, through suitable horizontal and vertical adjustments. Findings Numerical investigations show the feasibility of solving real-world problems involving optimization of transonic airfoil shapes and accurate computational fluid dynamics simulation models of such surfaces. The results show that the proposed approach outperforms traditional surrogate-based approaches. Originality/value The proposed aerodynamic design optimization algorithm is novel and holistic. In particular, the ARP correction technique is original. The algorithm is useful for fast design of aerodynamic surfaces using high-fidelity simulation data in moderately sized search spaces, which is challenging using conventional methods because of excessive computational costs.


Sign in / Sign up

Export Citation Format

Share Document