Influence of the cutting condition on the wear and the surface roughness in the steel AISI 4140 with mixed ceramic and diamond tool

2018 ◽  
Vol 16 (6) ◽  
pp. 828-836
Author(s):  
Razika Aouad ◽  
Idriss Amara

PurposeThe purpose of this paper is to study the influence of the cutting conditions (cutting speed, feed rate and cutting depth) on the roughness (Ra) and on the flank wear (Vb) of the steel AISI 4140.Design/methodology/approachMixed ceramic (CC650) and polycrystalline cubic boron nitride (PCBN) have been used to carry out straight turning tests under dry conditions.FindingsThe results indicate that PCBN is more efficient than mixed ceramic (Al2O3+TiC) used in terms of wear resistance regardless of the aggressiveness of the AISI 4140 at 50 hardness rockwell (HRC). Consequently, it is the most powerful. Surface quality attained with PCBN tool considerably compares with that of grinding. Even when the tool wear VB reached 0.3 mm, the majority of the recorded Ra values did not exceed 1 m at the various speeds tested. The correlation of tool wear Vb and surface roughness Ra established allows obtaining experimental empirical data on the cutting tool wear from measured surface roughness for practical use in industry. The values of constants and the coefficient of determinationR2of this mathematical model will be calculated. Mathematical models expressing the relation between the elements of the cutting regime and technological parameters (tool life and roughness) are proposed.Originality/valueMany works have been already made in the similar manner, but this study of CC650 and PCBN wear is the first. Through this study, we propose a mathematical model expressing the relation between the elements of the cutting regime, tool life and roughness.

Author(s):  
Xuan-Truong Duong ◽  
Marek Balazinski ◽  
René Mayer

The initial tool wear during machining of titanium metal matrix composite (TiMMCs) is the result of several wear mechanisms: tool layer damage, friction - tribological wear, adhesion, diffusion and brace wear. This phenomenon occurs at the first instant and extends to only ten seconds at most. In this case the adhesive wear is the most important mechanism while the brace wear is considered as a resistance wear layer at the beginning of the steady wear period. In this paper, the effect of the initial tool wear and initial cutting conditions on tool wear progression and tool life is investigated. We proposed herein a new mathematical model based on the scatter wear and Lyapunov exponent to study quantitatively the “chaotic tool wear”. The Chaos theory, which has proved efficient in explaining how something changes in time, was used to demonstrate the dependence of the tool life on the initial cutting conditions and thus contribute to a better understanding of the influence of the initial cutting condition on the tool life. Based on the chaotic tool wear model, the scatter wear dimension and Lyapunov exponents were found to be positive in all case of the initial cutting conditions such as initial speed, feed rate and depth of cut. The initial cutting speed appears however to have the most significant impact on tool life. In particular, the mathematical model was successfully applied to the case of machining TiMMCs. It was clearly shown that changing the initial cutting speed by 20 m/min for the first two seconds of machining instead of keeping it constant at 60 m/min during the whole cutting process leads to an increase in the tool life (up to 24%).


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6106
Author(s):  
Waleed Ahmed ◽  
Hussien Hegab ◽  
Atef Mohany ◽  
Hossam Kishawy

It is necessary to improve the machinability of difficult-to-cut materials such as hardened steel, nickel-based alloys, and titanium alloys as these materials offer superior properties such as chemical stability, corrosion resistance, and high strength to weight ratio, making them indispensable for many applications. Machining with self-propelled rotary tools (SPRT) is considered one of the promising techniques used to provide proper tool life even under dry conditions. In this work, an attempt has been performed to analyze, model, and optimize the machining process of AISI 4140 hardened steel using self-propelled rotary tools. Experimental analysis has been offered to (a) compare the fixed and rotary tools performance and (b) study the effect of the inclination angle on the surface quality and tool wear. Moreover, the current study implemented some artificial intelligence-based approaches (i.e., genetic programming and NSGA-II) to model and optimize the machining process of AISI 4140 hardened steel with self-propelled rotary tools. The feed rate, cutting velocity, and inclination angle were the selected design variables, while the tool wear, surface roughness, and material removal rate (MRR) were the studied outputs. The optimal surface roughness was obtained at a cutting speed of 240 m/min, an inclination angle of 20°, and a feed rate of 0.1 mm/rev. In addition, the minimum flank tool wear was observed at a cutting speed of 70 m/min, an inclination angle of 10°, and a feed rate of 0.15 mm/rev. Moreover, different weights have been assigned for the three studied outputs to offer different optimized solutions based on the designer’s interest (equal-weighted, finishing, and productivity scenarios). It should be stated that the findings of the current work offer valuable recommendations to select the optimized cutting conditions when machining hardened steel AISI 4140 within the selected ranges.


2013 ◽  
Vol 315 ◽  
pp. 241-245 ◽  
Author(s):  
Ali Davoudinejad ◽  
M.Y. Noordin ◽  
Danial Ghodsiyeh ◽  
Sina Alizadeh Ashrafi ◽  
Mohsen Marani Barzani

Hard turning is a dominant machining operation performed on hardened materials using single-point cutting tools. In recent years, hard turning operation has become more and more capable with respect to various machinability criteria. This work deals with machinability of hardened DF-3 tool steel with 55 ±1 HRC hardness at various cutting conditions in terms of tool life, tool wear mechanism and surface roughness. Continuous dry turning tests were carried out using coated, mixed ceramic insert with honed edge geometry. Two different cutting speeds, 100 and 210 m/min, and feed rate values of 0.05, 0.125 and 0.2 mm/rev were used with a 0.2 mm constant depth of cut for all tests. Additionally scanning electron microscope (SEM) was employed to clarify the different types of wear. As far as tool life was concerned, best result was achieved at lowest cutting condition whereas surface roughness values decreased when operating at higher cutting speed and lower feed rate. Additionally maximum volume of material removed is obtained at low cutting speed and high feed rate. Dominant wear mechanism observed during the experiments were flank and crater wear which is mainly caused by abrasive action of the hard workpiece material with the ceramic cutting tools.


2021 ◽  
Vol 27 (1) ◽  
pp. 30-35
Author(s):  
Youcef Abidi

Abstract Tool wear and surface roughness as performance indexes are considered to be the most important in terms of hardened materials’ machinability. The best combination of cutting parameters which enhances the compromise between tool life, productivity and machined surface quality contribute to benefice on production cost, which makes manufacturing industry interested in it. The aim of this research is to investigate the life of ceramic cutting tool and machining productivity together with surface roughness during turning of hardened steel C45, with focus on the selection of the optimal cutting parameter combination. The experiments are carried out based on uni-factorial planning methodology of cutting speeds and feed rates. The results show that the mixed ceramic tool is suitable for turning hardened steel C45 (40 HRC) and the conclusion is that it performed well in terms of tool life, productivity and surface quality at a combination of cutting speed (200 m/min), feed (0.08 mm/rev) and depth of cut (0.3 mm). Additionally, a tool life model has been proposed which is presented very high coefficient of determination.


2018 ◽  
Vol 779 ◽  
pp. 153-158
Author(s):  
Phacharadit Paengchit ◽  
Charnnarong Saikaew

This work investigated the influences of cutting speed and feed rate on surface roughness in hard turning of AISI 4140 chromium molybdenum steel bar using mixed ceramic inserts Al2O3+TiC under dry condition for automotive industry applications. Turning experiments were conducted by varying cutting speed ranging from 150 to 220 m/min and feed rate ranging from 0.06 to 1 mm/rev. General factorial design was used to analyze the data set of surface roughness and determine statistically significant process factors based on analysis of variance results. The results showed that average surface roughness was significantly affected by feed rate and interaction between cutting speed and feed rate at the level of significance of 0.05. An optimal operating condition for hard turning of AISI 4140 with the ceramic cutting tool that produced a minimum machined surface roughness was obtained at cutting speed of 220 m/min and 0.06 mm/rev.


2016 ◽  
Vol 12 (1) ◽  
pp. 177-193 ◽  
Author(s):  
M.P. Jenarthanan ◽  
A. Ram Prakash ◽  
R. Jeyapaul

Purpose – The purpose of this paper is to develop a mathematical model for metal removal rate and surface roughness through Taguchi method and analyse the influence of the individual input machining parameters (cutting speed, feed rate, helix angle, depth of cut and wt% on the responses in milling of aluminium-titanium diboride metal matrix composite (MMC) with solid carbide end mill cutter coated with nano-crystals. Design/methodology/approach – Taguchi OA is used to optimise the material removal rate (MRR) and Surface Roughness by developing a mathematical model. End Milling is used to create slots by combining various input parameters. Five factors, three-level Taguchi method is employed to carry out the experimental investigation. Fuzzy logic is used to find the optimal cutting factors for surface roughness (Ra) and MRR. The factors considered were weight percentage of TiB2, cutting speed, depth of cut and feed rate. The plan for the experiments and analysis was based on the Taguchi L27 orthogonal array with five factors and three levels. MINITAB 17 software is used for regression, S/N ratio and analysis of variance. MATLAB 7.10.0 is used to perform the fuzzy logics systems. Findings – Using fuzzy logics, multi-response performance index is generated, with which the authors can identify the correct combination of input parameters to get higher MRR and lower surface roughness value with the chosen range with 95 per cent confidence intervals. Using such a model, remarkable savings in time and cost can be obtained. Originality/value – Machinability characteristics in Al-TiB2 MMC based on the Taguchi method with fuzzy logic has not been analysed previously.


2012 ◽  
Vol 488-489 ◽  
pp. 457-461 ◽  
Author(s):  
Ali Davoudinejad ◽  
Sina Alizadeh Ashrafi ◽  
Abdolkarim Niazi

Aluminum 6061 is a common alloy which is widely used in aerospace and yacht construction industry. Generally machining of aluminum alloys inherently generates high chip sticking on tool face and changes the tool edge geometry, which not only reduces tool life but also impairs the product surface quality. This study investigated the tool life and tool wear mechanisms besides evaluating surface roughness in various cutting conditions to attain finest possible surface with minimum tool wear. Turning experiments performed under dry orthogonal cutting of Al6061 using carbide CVD tri-phase coated inserts with constant depth of cut, various cutting speeds and feed rates. Insert’s flank and rake faces analyzed to assess wear mechanisms. Additionally Scanning electron microscope (SEM) employed to clarify different types of wear. Surface integrity and effect of built up edge in deviating surface roughness were studied in each cutting condition. Additionally results of experiments demonstrated that built up edge took over cutting edge and with sacrificing surface roughness, tool life increased by decreasing pace of abrasive wear propagation on flank face. According to these experiments the main reasons of flank wear were abrasive and adhesion of aluminum on tool face.


2021 ◽  
Author(s):  
Salah Gariani ◽  
Mahmoud Elsayed ◽  
Islam Shyha

Abstract The paper details experimental and optimisation results for the effect of cutting fluid concentration and operating parameters on the average surface roughness (Ra) and tool flank wear (VB) when flooded turning of Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. Cutting fluid concentration, cutting speed, feed rate and cutting tool were the control variables. Response Surface Methodology (RSM) was employed to develop an experimental design and optimise Ra and VB using linear models. The study revealed that cutting fluid concentration has a little influence on Ra and VB performance while Ra was strongly affected by feed rate and cutting tool type. The developed empirical model also suggested that the best parameters setting to minimise Ra and VB are 5%, 58 m/min, 0.1 mm/rev for cutting fluid concentration, cutting speed and feed rate, respectively, using H13A tool. At this setting, the predicted surface roughness and tool wear were 0.48 and 30 µm, respectively. In the same vein, tool life and micro-hardness tests were performed at the suggested optimum cutting condition with different cutting speeds. A notable decrease in tool life (82.3%) was obtained when a higher cutting speed was used.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ahsana Aqilah Ahmad ◽  
Jaharah A. Ghani ◽  
Che Hassan Che Haron

Purpose The purpose of this paper is to study the cutting performance of high-speed regime end milling of AISI 4340 by investigating the tool life and wear mechanism of steel using the minimum quantity lubrication (MQL) technique to deliver the cutting fluid. Design/methodology/approach The experiments were designed using Taguchi L9 orthogonal array with the parameters chosen: cutting speed (between 300 and 400 m/min), feed rate (between 0.15 and 0.3 mm/tooth), axial depth of cut (between 0.5 and 0.7 mm) and radial depth of cut (between 0.3 and 0.7 mm). Toolmaker microscope, optical microscope and Hitachi SU3500 Variable Pressure Scanning Electron Microscope used to measure tool wear progression and wear mechanism. Findings Cutting speed 65.36%, radial depth of cut 24.06% and feed rate 6.28% are the cutting parameters that contribute the most to the rate of tool life. The study of the tool wear mechanism revealed that the oxide layer was observed during lower and high cutting speeds. The former provides a cushion of the protective layer while later reduce the surface hardness of the coated tool Originality/value A high-speed regime is usually carried out in dry conditions which can shorten the tool life and accelerate the tool wear. Thus, this research is important as it investigates how the use of MQL and cutting parameters can prolong the usage of tool life and at the same time to achieve a sustainable manufacturing process.


2019 ◽  
Vol 91 (10) ◽  
pp. 1327-1339
Author(s):  
Seyedamin Jarolmasjed ◽  
Behnam Davoodi ◽  
Babak Pourebrahim Alamdari

Purpose The purpose of this paper is to machine the pressure surface of the turbine blade made of A286 iron-based superalloy by using four directions of raster strategy, including horizontal upward, horizontal downward, vertical upward and vertical downward, to achieve appropriate surface roughness and to investigate the tool wear in each strategy. Design/methodology/approach In this study, all cutting tests were performed by DAHLIH-MCV 1020 BA vertical 3-axis machining center with ball nose end mill. After milling by each strategy, according to the surface slope, the surface was divided into 27 meshes, and roughness of surface was studied and compared. Roughness measuring after machining was implemented by using portable Mahr ps1 roughness tester, and surface texture was photographed by CCD 100× optical zoom camera. Also, to measure tool flank wear in each strategy as an indication of tool life, the surface of workpiece was divided into four equal areas. The wear of the inserts was measured by ARCS vertical non-contact measuring system at the end of each area. Findings The results indicate that cutting directions and toolpath strategies have significant influence on tool wear and surface roughness in machining processes and that they can be taken into consideration individually as determinative parameters. In this case, the most uniform surface texture and the lowest surface roughness are obtained by using horizontal downward direction; in addition, abrasion is a dominant tool wear mechanism in all experiments, and tool wear in the horizontal downward is lower than other strategies. Practical implications Machining of turbine blades or other airfoil-shaped workpieces is quite common in manufacturing aerospace and aircraft products. The results of this research contribute to increasing quality of machined surface and tool life in machining of turbine blade. Originality/value This work proves the significance of milling strategies in machining of the turbine blade made of A286 superalloy and, consequently, exhibits the proper strategy in terms of surface roughness and tool life. Also, this work explains and elaborates the behavior of A286 superalloy in machining processes, which has not been studied much in recent research works.


Sign in / Sign up

Export Citation Format

Share Document