Adopting hybridized multicriteria decision model as a decision tool in engineering design

2019 ◽  
Vol 18 (2) ◽  
pp. 451-479 ◽  
Author(s):  
Olayinka Mohammed Olabanji ◽  
Khumbulani Mpofu

Purpose The purpose of this paper is to determine the suitability of adopting hybridized multicriteria decision-making models as a decision tool in engineering design. This decision tool will assist design engineers and manufacturers to determine a robust design concept before simulation and manufacturing while all the design features and sub features would have been identified during the decision-making process. Design/methodology/approach Fuzzy analytical hierarchy process (FAHP) and fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) are hybridized and applied to obtain optimal design of a reconfigurable assembly fixture (RAF) from a set of alternative design concepts. Design features and sub features associated with the RAF are identified and compared using fuzzified pairwise comparison matrices to obtain weights of their relative importance in the optimal design. The FAHP obtained the fuzzy synthetic extent (FSE) values of the design features and sub features. The FSE values are used as weights of the design features and sub features in generating the decision matrix. FTOPSIS and FTOPSIS based on left and right scores were adopted to predict effects of the weights. Results were obtained for normalized and unnormalized weights of the design features and its effects on the relative closeness coefficients of the design alternatives. Findings The improved performance of the FTOPSIS based on left and right scores is due to the involvement of the left and right scores of weights of the design features in the computation of distances from positive and negative ideal solutions. Embedding the weights of the design features in the normalized decision matrix before estimating the distances of the design concepts from ideal solutions reduces the dependency of the closeness coefficients on the weights of the design features. This also decreases the difference in the final values of the design concepts. In essence, the weights of the design features have an impact in the closeness coefficient. There is reduction in the closeness coefficients of the design concepts due to normalization of the weights of the design features. However, normalizing the weights of the design features did not affect the variations in the final values of the design concept. As the final value of the design concepts can be influenced by the normalized weights of the design features, it can be implied that normalization of weights of the sub features will also affect the decision matrix. The study has been able to proof that hybridizing FAHP and FTOPSIS can produce effective results for decisions on optimal design by the application of FTOPSIS based on left and right scores rather than the general FTOPSIS. Originality/value This research develops a hybridized multicriteria decision-making model for decision-making in engineering design. It presents a detailed extension of hybridized FAHP and FTOPSIS based on left and right scores as a useful tool for considering the relative importance of design features and sub features in optimal design selection.

2020 ◽  
Vol 92 (9) ◽  
pp. 1377-1384
Author(s):  
Leszek Rolka ◽  
Alicja Mieszkowicz-Rolka ◽  
Grzegorz Drupka

Purpose This paper aims to present a hybrid logical-arithmetic approach for selecting optimal flight routes. It can be used in the framework of free route airspace (FRA), which is aimed at achieving higher efficiency of air traffic management. Design/methodology/approach At the first stage, an initial subset of flight routes is selected that are promising alternatives with respect to single numerical criteria. At the second stage, a hybrid multicriteria decision model is constructed, consisting of numerical criteria and additional linguistic criteria. At the third stage, the numerical and linguistic criteria are integrated into a crisp decision matrix for determining the final ranking using the technique for order preferences by similarity to an ideal solution (TOPSIS) method. Findings The considered decision-making problem involves different kinds of criteria. Numerical (objective) criteria are given as real numbers. Linguistic (subjective) criteria are expressed with the help of fuzzy linguistic values. In consequence, a (logical) reasoning process prior to performing an (arithmetic) optimization procedure is necessary. Furthermore, a uniform optimization procedure requires a way of combining numerical and linguistic attributes. Practical implications The proposed approach can be applied to solving various multicriteria decision-making problems, where both objective and subjective criteria are taken into account. Originality/value First, a fuzzy information system that includes linguistic condition attributes is constructed. Second, a fuzzy inference system that is necessary for determining the resulting fuzzy criterion “turbulence conditions” for all flight routes is introduced. Finally, a way of combining numerical and linguistic criteria is proposed. This is done by converting values of fuzzy attributes into crisp ones, basing on the preferences of a decision-maker.


2020 ◽  
Vol 45 (4) ◽  
pp. 305-337
Author(s):  
Olayinka Mohammed Olabanji ◽  
Khumbulani Mpofu

AbstractManufacturers need to select the best design from alternative design concepts in order to meet up with the demand of customers and have a larger share of the competitive market that is flooded with multifarious designs. Evaluation of conceptual design alternatives can be modelled as a Multi-Criteria Decision Making (MCDM) process because it includes conflicting design features with different sub features. Hybridization of Multi Attribute Decision Making (MADM) models has been applied in various field of management, science and engineering in order to have a robust decision-making process but the extension of these hybridized MADM models to decision making in engineering design still requires attention. In this article, an integrated MADM model comprising of Fuzzy Analytic Hierarchy Process (FAHP), Fuzzy Pugh Matrix and Fuzzy VIKOR was developed and applied to evaluate conceptual designs of liquid spraying machine. The fuzzy AHP was used to determine weights of the design features and sub features by virtue of its fuzzified comparison matrix and synthetic extent evaluation. The fuzzy Pugh matrix provides a methodical structure for determining performance using all the design alternatives as basis and obtaining aggregates for the designs using the weights of the sub features. The fuzzy VIKOR generates the decision matrix from the aggregates of the fuzzified Pugh matrices and determine the best design concept from the defuzzified performance index. At the end, the optimal design concept is determined for the liquid spraying machine.


2017 ◽  
Vol 30 (8) ◽  
pp. 668-679 ◽  
Author(s):  
Puneeta Ajmera

Purpose Organizations have to evaluate their internal and external environments in this highly competitive world. Strengths, weaknesses, opportunities and threats (SWOT) analysis is a very useful technique which analyzes the strengths, weaknesses, opportunities and threats of an organization for taking strategic decisions and it also provides a foundation for the formulation of strategies. But the drawback of SWOT analysis is that it does not quantify the importance of individual factors affecting the organization and the individual factors are described in brief without weighing them. Because of this reason, SWOT analysis can be integrated with any multiple attribute decision-making (MADM) technique like the technique for order preference by similarity to ideal solution (TOPSIS), analytical hierarchy process, etc., to evaluate the best alternative among the available strategic alternatives. The paper aims to discuss these issues. Design/methodology/approach In this study, SWOT analysis is integrated with a multicriteria decision-making technique called TOPSIS to rank different strategies for Indian medical tourism in order of priority. Findings SO strategy (providing best facilitation and care to the medical tourists at par to developed countries) is the best strategy which matches with the four elements of S, W, O and T of SWOT matrix and 35 strategic indicators. Practical implications This paper proposes a solution based on a combined SWOT analysis and TOPSIS approach to help the organizations to evaluate and select strategies. Originality/value Creating a new technology or administering a new strategy always has some degree of resistance by employees. To minimize resistance, the author has used TOPSIS as it involves group thinking, requiring every manager of the organization to analyze and evaluate different alternatives and average measure of each parameter in final decision matrix.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ruipu Tan ◽  
Lehua Yang ◽  
Shengqun Chen ◽  
Wende Zhang

PurposeThe Chinese believe that “man will conquer the sky” and “fighting with the sky brings endless joy”. Considering that disaster assessment can be regarded as a two-person, zero-sum game problem between nature and human beings, this paper proposes a multi-attribute decision-making method based on game theory and grey theory in a single-value neutrosophic set environment. Due to the complexity and uncertainty of the decision-making environment, the method builds a decision matrix based on single-valued neutrosophic numbers.Design/methodology/approachFirst, the authors use the single-value neutrosophic information entropy to calculate the attribute weights and the weighted decision matrix. Second, the optimal mixed strategy method based on linear programming solves the optimal mixed strategy for both sides of the game so that the expected payoff matrix can be obtained. Finally, grey correlation analysis is used to obtain the closeness coefficient of each alternative based on the expectation payoff matrix to identify the ranking result of the alternative.FindingsAn example is used to verify the effectiveness of the proposed method, and its rationality is verified through a comprehensive comparison and analysis of the various aspects.Practical implicationsThe proposed decision-making method can be applied to typhoon disaster assessment. Such assessment results can provide intelligent decision support to the relevant disaster management departments, thereby reducing the negative impact of typhoon disasters on society, stabilizing society and improving people's happiness. Further, the method can be used for decision-making, recommendation and evaluation in other fields.Originality/valueThe proposed method uses single-value neutrosophic numbers to solve the information representation problem of decision-making in a complex environment. Under a new perspective, game theory is used to handle the decision matrix, while grey relational analysis converts inexact numbers to exact numbers for comparison and sorting. Thus, the proposed method can be used to make reasonable decisions while preserving information to the extent possible.


2014 ◽  
Vol 4 (3) ◽  
pp. 447-462 ◽  
Author(s):  
Om Ji Shukla ◽  
Gunjan Soni ◽  
G. Anand

Purpose – In the current customer-driven market, the manufacturers have to be highly responsive and flexible to deliver a variety of products. Hence, to meet this dynamic and uncertain market changes, the production system, which enables the manufacturing of such variety of products should be able to meet such diverse, dynamic changes. Hence, selecting a suitable manufacturing system is a key strategic decision for today's manufacturing organization, which needs to survive in these uncertain market conditions. Hence, the purpose of this paper is to present a decision-making model for selecting the best manufacturing system and also discuss the criteria on the basis of which the management can select the same. Design/methodology/approach – A case of small- and medium-sized company is presented, in which the management is deciding to establish a most suitable manufacturing system. To supplement this, a suitable multi-criteria decision-making model (MCDM), the grey approach is used to analyze manufacturing system alternatives based on various decision criteria to arrive a comparative ranking. Findings – An extensive analysis of grey-based decision-making model described grey decision matrix, grey normalized decision matrix, grey weighted normalized decision matrix and grey possibility degrees for three alternatives revealed that lean manufacturing systems was found to be the most suitable manufacturing system among three alternatives for a given case. Research limitations/implications – The same study can be extended by including sub-criteria with main criteria for selection of manufacturing system by utilizing two MCDM techniques such as AHP or ANP with Grey approach. Practical implications – The Grey approach has been discussed in a detailed way and it will be useful for the managers to use this approach as a tool for solving similar type of decision-making problems in their organizations in the future. Originality/value – Although, the problem of selecting a suitable manufacturing system is often addressed both in practice and research, very few reports are available in the literature of Grey-based decision models that demonstrated its application for selecting a suitable manufacturing systems.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fatma Dammak ◽  
Leila Baccour ◽  
Adel M. Alimi

This work is interested in showing the importance of possibility theory in multicriteria decision making (MCDM). Thus, we apply some possibility measures from literature to the MCDM method using interval-valued intuitionistic fuzzy sets (IVIFSs). These measures are applied to a decision matrix after being transformed with aggregation operators. The results are compared between each other and concluding remarks are drawn.


Author(s):  
SERAFIM OPRICOVIC ◽  
GWO-HSHIUNG TZENG

In many cases, criterion values are crisp in nature, and their values are determined by economic instruments, mathematical models, and/or by engineering measurement. However, there are situations when the evaluation of alternatives must include the imprecision of established criteria, and the development of a fuzzy multicriteria decision model is necessary to deal with either "qualitative" (unquantifiable or linguistic) or incomplete information. The proposed fuzzy multicriteria decision model (FMCDM) consists of two phases: the CFCS phase - Converting the Fuzzy data into Crisp Scores, and the MCDM phase - MultiCriteria Decision Making. This model is applicable for defuzzification within the MCDM model with a mixed set of crisp and fuzzy criteria. A newly developed CFCS method is based on the procedure of determining the left and right scores by fuzzy min and fuzzy max, respectively, and the total score is determined as a weighted average according to the membership functions. The advantage of this defuzzification method is illustrated by some examples, comparing the results from three considered methods.


2020 ◽  
Vol 21 (6) ◽  
pp. 1707-1730
Author(s):  
Amir Karbassi Yazdi ◽  
Thomas Hanne ◽  
Juan Carlos Osorio Gómez

The aim of the study in this paper is to show how the performance of banks can be evaluated by ranking them based on Balanced Scorecard (BSC) and Multicriteria Decision Making (MCDM) methods. Nowadays, assessing the performance of companies is a vital work for finding their weaknesses and strengths. The banking sector is an important area in the service sector. Many people want to know which bank performs best when entrusting their money to them. For assessing the performance of banks, BSC can be used. This method helps to translate strategic issues to meaningful insights for the respective financial institutions. After that, the banks will be ranked based on performance indicators by the Weighted Aggregated Sum Product Assessment (WASPAS) method. Because this method is based on a decision matrix, weights are required. To find such weights, the Step-wise Weight Assessment Ratio Analysis (SWARA) method is applied. The results show that the International Bank of Colombia has a much better performance than other Colombian banks. Besides, further insights regarding the evaluation process based on BSC, SWARA, and WASPAS are obtained.


2020 ◽  
Vol 54 (4) ◽  
pp. 551-582
Author(s):  
Jolly Puri ◽  
Meenu Verma

PurposeThis paper is focused on developing an integrated algorithmic approach named as data envelopment analysis and multicriteria decision-making (DEA-MCDM) for ranking decision-making units (DMUs) based on cross-efficiency technique and subjective preference(s) of the decision maker.Design/methodology/approachSelf-evaluation in data envelopment analysis (DEA) lacks in discrimination power among DMUs. To fix this, a cross-efficiency technique has been introduced that ranks DMUs based on peer-evaluation. Different cross-efficiency formulations such as aggressive and benevolent and neutral are available in the literature. The existing ranking approaches fail to incorporate subjective preference of “one” or “some” or “all” or “most” of the cross-efficiency evaluation formulations. Therefore, the integrated framework in this paper, based on DEA and multicriteria decision-making (MCDM), aims to present a ranking approach to incorporate different cross-efficiency formulations as well as subjective preference(s) of decision maker.FindingsThe proposed approach has an advantage that each of the aggressive, benevolent and neutral cross-efficiency formulations contribute to select the best alternative among the DMUs in a MCDM problem. Ordered weighted averaging (OWA) aggregation is applied to aggregate final cross-efficiencies and to achieve complete ranking of the DMUs. This new approach is further illustrated and compared with existing MCDM approaches like simple additive weighting (SAW) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to prove its validity in real situations.Research limitations/implicationsThe choice of cross-efficiency formulation(s) as per subjective preference of the decision maker and different orness levels lead to different aggregated scores and thus ranking of the DMUs accordingly. The proposed ranking approach is highly useful in real applications like R and D projects, flexible manufacturing systems, electricity distribution sector, banking industry, labor assignment and the economic environmental performances for ranking and benchmarking.Practical implicationsTo prove the practical applicability and robustness of the proposed integrated DEA-MCDM approach, it is applied to top twelve Indian banks in terms of three inputs and two outputs for the period 2018–2019. The findings of the study (1) ensure the impact of non-performing assets (NPAs) on the ranking of the selected banks and (2) are enormously valuable for the bank experts and policy makers to consider the impact of peer-evaluation and subjective preference(s) in formulating appropriate policies to improve performance and ranks of underperformed banks in competitive scenario.Originality/valueTo the best of the authors’ knowledge, this is the first study that has integrated both DEA and MCDM via OWA aggregation to present a ranking approach that can incorporate different cross-efficiency formulations and subjective preference(s) of the decision maker for ranking DMUs.


2018 ◽  
Vol 159 ◽  
pp. 02022
Author(s):  
Safarudin Ramdhani ◽  
J Jamari

Decision making a concept the optimal inside a concept engineering design (CED) is a job repeated. Decision matrix based method is the most popular concept selection approach used in engineering design. A matrix is an array that presents an axis of the alternate list being evaluated. The list of weighted criteria depends upon the importance of each of the final decisions to be taken. The decision matrix in this determined some weights and the rank as attributes to evaluate a total scores. Upon the weighting sometimes make the designer confusedly in determine variety. This paper described a decision making computer based, where a logic matrix decisions on a basis in the selection and evaluation. This model presents a logical procedure for concept evaluation considering the specified attribute. In decision-making this model is integrated and intended to improve the ability of beginners in designing.


Sign in / Sign up

Export Citation Format

Share Document