Effect of outrigger-belt truss location on the dynamic response of high-rise building subjected to blast loading

2016 ◽  
Vol 14 (1) ◽  
pp. 54-77 ◽  
Author(s):  
Yasser Sharifi ◽  
Hamed Aviz

Purpose – Nowadays, with the expansion of terrorist operations around the world and also the dangers of accidental explosions, the need to design structures resistant to this phenomenon for the protection and safety of its citizens is inevitable. Tall buildings are one of the most important issues because of which those behavior should be investigated against the blast loading. Design/methodology/approach – In this paper, the authors used a simple method for investigating the dynamic response of tall buildings with the combined system of framed tube, shear core and outrigger-belt truss located at different heights of the building’s that were subjected to blast loading. This proposed model is based on the development of a continuum model and the ruling equations that have been obtained using the energy principle predict the whole structure idealized as a shear and flexural cantilever beam with rotational springs at the belt truss location. Findings – The mathematical procedure shows a good understanding of the structural behavior and is suitable for a quick evaluation during the preliminary design stage, which requires less time. Moreover, it was concluded that the present blast load idealization can be used to reasonably assess the response of tall buildings subjected to blast load. Originality/value – The comparative analysis in this paper could give other engineers a simple analysis method for the preliminary analysis and design of tall building analysis. Numerical example is given to illustrate the ease of application and the accuracy of the suggested model.

The dynamic response of reinforced concrete (RC) panels without and with different configuration of opening under blast load scenario is investigated in the present study. The numerical simulations were carried out using finite element method with ABAQUS application. The concrete behavior under blast loading was modelled using Concrete damaged plasticity model. The material parameters for concrete damaged plasticity model were determined using methodology proposed by [14]. The parametric study was carried out using variation in blast load due to different charge weight. It was observed that the peak displacement increases with increase in blast load. It was also observed that at lower blast load, failure of reinforced concrete panel was initiated by cracking at rear face of panel but as the blast load increases the RC panel was failed by combination of crushing of front face of panel along with cracking of rear face. It was observed that for the given blast load, the RC panel without opening is less affected by crushing failure as compared to RC panel with opening configuration studied. It was also observed that the RC panel with circular opening at center is stiffer than other opening configuration and observed to have stable structural performance against the blast load studied.


Author(s):  
Sofia W. Alisjahbana ◽  
Wiratman Wangsadinata

This paper analyzes the dynamic response of fixed supported orthotropic plates under localized blast loading using the method of modal superposition. The analysis procedure is used to quantify the linear transient response of such plates to the localized blast load at different positions. Many studies are currently available, in which the blast load is considered to be spatially uniform across the plate, with a temporal distribution described by a Dirac delta function. The novel aspect considered here is the case for which the blast load is modeled as a linear triangular function, and the orthotropic plate is fixed along its edges. A Mathematica program is used to solve the first and the second auxiliary Levy-type problem to determine the values of the natural frequencies of the system. The results presented here are collected from the results of analyses performed on localized blast-loaded orthotropic plates, for a variety of parameters important with regard to the dynamic response. Conclusions are drawn concerning the influence of the various parameters on the nature of the orthotropic-plate response.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lucas Willian Aguiar Mattias ◽  
Carlos Andres Millan Paramo

Purpose This paper analyzes the effect that is generated in the dynamic response of a Commonwealth Advisory Aeronautical Council building for different types of power spectra. This article also compares synthetic wind method (SWM) results with wind tunnel tests and other numerical approaches.Design/methodology/approach One of the main methodologies developed in Brazil, the SWM, is employed to determine the dynamic wind loads. The Davenport, Lumley and Panowski, Harris, von Karman and Kaimal model are used in SWM to generate the resonant harmonics. Lateral pressures are calculated by the wind speed deflection profile for 30, 35, 40 and 45 m/s. The structure is processed in Autodesk Robot Structural Analysis with numerical analysis in FEM by the Hilber–Hughes–Taylor method. To corroborate the synthetic wind with experimental results, displacement curves are developed for wind tunnel experimental results, Davenport method, Eurocode and NBR 6123, together with the SWM.Findings Results show that for 30 m/s, the lowest convergence of the power spectra models was presented and that the greatest difference found was below 10%. In addition, it was shown that Eurocode 1-4 can lead to oversizing, while NBR 6123 can lead to undersizing, compared with the experimental results. Finally, results by the Davenport method, wind tunnel test and synthetic wind showed good accuracy.Originality/value By carrying out this comparative analysis, this work presents an important contribution in the field of calculating the dynamic response of tall buildings. Studies with these comparisons to corroborate the SWM had not yet been carried out.


2020 ◽  
Vol 14 ◽  
Author(s):  
Osama Bedair

Background: Modular steel buildings (MSB) are extensively used in petrochemical plants and refineries. Limited guidelines are available in the industry for analysis and design of (MSB) subject to accidental vapor cloud explosions (VCEs). Objectives: The paper presents simplified engineering model for modular steel buildings (MSB) subject to accidental vapor cloud explosions (VCEs) that are extensively used in petrochemical plants and refineries. Method: A Single degree of freedom (SDOF) dynamic model is utilized to simulate the dynamic response of primary building components. Analytical expressions are then provided to compute the dynamic load factors (DLF) for critical building elements. Recommended foundation systems are also proposed to install the modular building with minimum cost. Results: Numerical results are presented to illustrate the dynamic response of (MSB) subject to blast loading. It is shown that (DLF)=1.6 is attained at (td/t)=0.4 for front wall (W1) with (td/T)=1.25. For side walls (DLF)=1.41 and is attained at (td/t)=0.6. Conclusions: The paper presented simplified tools for analysis and design of (MSB) subject accidental vapor cloud blast explosions (VCEs). The analytical expressions can be utilized by practitioners to compute the (MSB) response and identify the design parameters. They are simple to use compared to Finite Element Analysis.


2016 ◽  
Vol 127 ◽  
pp. 719-736 ◽  
Author(s):  
S.K. Hashemi ◽  
M.A. Bradford ◽  
H.R. Valipour

2017 ◽  
Vol 78 ◽  
pp. 122-133 ◽  
Author(s):  
Ying Li ◽  
Weiguo Wu ◽  
Haiqing Zhu ◽  
Zhen Wu ◽  
Zhipeng Du

2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.


Sign in / Sign up

Export Citation Format

Share Document