A Simplified Design Model for Modular Steel Buildings Subject to Vapor Cloud Explosions (VCEs)

2020 ◽  
Vol 14 ◽  
Author(s):  
Osama Bedair

Background: Modular steel buildings (MSB) are extensively used in petrochemical plants and refineries. Limited guidelines are available in the industry for analysis and design of (MSB) subject to accidental vapor cloud explosions (VCEs). Objectives: The paper presents simplified engineering model for modular steel buildings (MSB) subject to accidental vapor cloud explosions (VCEs) that are extensively used in petrochemical plants and refineries. Method: A Single degree of freedom (SDOF) dynamic model is utilized to simulate the dynamic response of primary building components. Analytical expressions are then provided to compute the dynamic load factors (DLF) for critical building elements. Recommended foundation systems are also proposed to install the modular building with minimum cost. Results: Numerical results are presented to illustrate the dynamic response of (MSB) subject to blast loading. It is shown that (DLF)=1.6 is attained at (td/t)=0.4 for front wall (W1) with (td/T)=1.25. For side walls (DLF)=1.41 and is attained at (td/t)=0.6. Conclusions: The paper presented simplified tools for analysis and design of (MSB) subject accidental vapor cloud blast explosions (VCEs). The analytical expressions can be utilized by practitioners to compute the (MSB) response and identify the design parameters. They are simple to use compared to Finite Element Analysis.

Author(s):  
K. N. Song ◽  
B. S. Kang ◽  
K. H. Yoon ◽  
S. K. Choi ◽  
G. J. Park

Recently, much attention has been focused on the design of the fuel assemblies in the Pressurized Light Water Reactor (PLWR). The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence Axiom is utilized for the design. For the conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detailed design is carried out based on the result of the axiomatic design. For the detailed design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.


2009 ◽  
Vol 610-613 ◽  
pp. 408-413
Author(s):  
Jian Yu Zhang ◽  
Yue Fu ◽  
Li Bin Zhao ◽  
Jian Cheng Fang

Flywheel rotor structure is one of essential assemblies of the flywheel system used in IPACS. It is significant to ensure the safety of metallic hub and the composite rim under high centrifugal loading induced by the rotation field and the surface pressure produced by the interface misfits. In this paper a 3-D stress analysis model of the flywheel rotor is presented with the finite element analysis software ANSYS and the failure criteria of the materials are discussed to assess the structural strength. Moreover, the key design parameters are investigated briefly to disclose their influences on the stress distribution of rotor structure. At last, an optimum mathematics model with the outer radius of metallic hub, the thickness of each composite ring and the interface misfits as the design variables is presented. Based on the optimum design platform, the series of flywheel rotor structures can be designed systematically.


Author(s):  
Yiannis Constantinides ◽  
Jen-hwa Chen ◽  
Lee Tran ◽  
Prahlad Enuganti ◽  
Mike Campbell

Design of deepwater risers involves the use of multiple conservative design parameters to account for the uncertainty in the understanding of the behavior of complex structures. As the oil industry moves into deeper and harsher waters, the design tolerances are getting stretched. Chevron has been monitoring the structural response of a deepwater Gulf of Mexico steel catenary riser (SCR) to improve the understanding of riser behavior and to evaluate the existing analysis and design methodologies against actual field measurements. The following paper presents a selected set of results from benchmark of SCR response in storm conditions against analytical predictions, based on industry standard methodologies. The predictions are based on a finite element analysis (FEA) modeling of the riser structure with empirically formulated models for hydrodynamics and soil-structure interaction. Predicted riser response in terms of accelerations and stresses along the length are compared against field measurements showing good overall agreement.


2010 ◽  
Vol 33 ◽  
pp. 580-582 ◽  
Author(s):  
Zhao Hui Liu ◽  
Xiao Jun Wang

Finite element analysis and the ANSYS Workbench software is used to analyze the dynamic response characteristic of wind turbine tubular tower and solve out the natural vibration frequencies. That result is used to verify the design parameters and optimize the tubular tower.


2021 ◽  
Author(s):  
Mohammad Haroon Ehsan ◽  
Mutlu Seçer

In the conventional analysis and design of steel structures, beam-to-column connections are generally assumed as entirely rigid or perfectly pinned. This assumption simplifies analysis and design steps and preferred extensively in structural engineering practice. However, experimental studies conducted in recent years have revealed that handling some of the beam-to-column connections as entirely rigid or perfectly pinned does not give realistic results. In fact, most of the connections used in current practice have some certain amount of stiffness which fall between the extreme cases of entirely rigid and perfectly pinned. In order to model the beam-to-column connections properly, several researchers have proposed various mathematical models based on experimental results. In these models, moment rotation relations of beam-to-column connections are defined according to the type of connection. In this study, moment-rotation behaviors of beam-to-column connections formed by flush end-plate are investigated using finite element analysis and a well-known practical mathematical model. Moreover, numerical analysis outcomes were compared with the test results of a reference study from the literature. This paper showed the importance of structural design parameters in determining moment-rotation relationship of flush end-plate type of beam-to-column connections and evaluated the efficiency of the practical numerical models.


Author(s):  
Kannan Venkatesh ◽  
John B. Shung

Abstract A two-dimensional model for a trochoidal-type machine without apex seals using finite element method has been developed with the help of Cosmos/M V1.65, and is evaluated by using a classical free-body technique. The minimum running clearance required to avoid contact between rotor and chamber is determined by an iterative procedure using the finite element model. The variation in the minimum required running clearance with the variation in the design parameters is studied. Guidelines for using the results of this study for an optimal design of a trochoidal-type machine without apex seals are presented.


2010 ◽  
Vol 37 (5) ◽  
pp. 675-683 ◽  
Author(s):  
J. Sadeghi ◽  
P. Barati

The aim of this research is to improve the accuracy of conventional railway design methods by addressing the main track substructure parameters omitted in the current track design approach. Nonlinear and discrete properties of the track support system were studied and their influence on the calculation of railway design parameters was measured by conducting a field investigation and using finite element analysis. It was demonstrated that wheel loads and accumulative track loading are the key factors influencing nonlinear behavior of the track support system. Mathematical expressions were developed for the impact of the nonlinearity of the track support system based on the track analysis results, and correction factors were established for rail bending moments and rail deflections calculated by current methods. It was shown that the incorporation of these factors improves the accuracy and reliability of the conventional track design method.


Underground metro stations are influenced by critical external loads such as earth pressure, hydrostatic pressure, bedding spring stiffness and backfill soil cover. Optimization, constructability and sustainability is a need, which demands thorough critical analysis and design. The variation in design parameters like ground water level (GWT), bedding spring stiffness (ks) and earth pressure coefficient (ko) needs to be covered through the analysis. Accordingly, design demands the upper bound and lower bound parameters considerations for finite element analysis. This paper presents, best practices for finite element modelling approach such as mesh configuration, loading, geometry, support arrangement; analysis approach such as analysis parameters, solvers and design idealization of critical forces such as bending moment, shear force and axial force at wall slab junction and slab column junction based on the international codes such as Euro-code and Indian codes. Also paper compares the behavior of 2D and 3D finite element modelling of underground metro station.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xiaobin Hu ◽  
Chen Lu ◽  
Xiaoqing Zhu

This paper presents a simplified model for dynamic response analysis of the framed self-centering wall (FSCW) structure under seismic excitations. In the analysis model, the frame is equivalent as a single-degree-of-freedom system and collaborates with the self-centering (SC) wall to resist lateral loads. By way of pushover analysis of a typical FSCW structure, the proposed analysis model is validated by comparing the analysis results with those obtained from the finite element analysis method. Using the analysis model, motion equations of the FSCW structure under seismic excitations are established and solved through numerical simulations. Finally, a comprehensive parametric study is conducted to investigate the effects of a variety of design parameters on seismic responses of the FSCW structure. It shows that improving the yield force or elastic stiffness of the frame can help greatly lessen seismic responses of the FSCW structure in terms of the rotation angle of the SC wall.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6849
Author(s):  
Tayfun Gundogdu ◽  
Zi-Qiang Zhu ◽  
Jean-Claude Mipo

This paper presents a detailed analysis and design guidelines for advanced nonoverlapping winding induction machines (AIMs) with coil-pitch of two slot-pitches by considering some vital empirical rules and flux-weakening characteristics. The aim of the study is to develop a type of new winding and stator topology for induction machines (IMs) that will lead to a decrease in total axial length without sacrificing torque, power, and efficiency. The key performance characteristics of the improved AIMs are investigated by 2D time-stepping finite element analysis (FEA) and compared with those of IMs having fractional and conventional overlapping and nonoverlapping windings. Compared with the conventional overlapping winding counterpart of the AIM, a ~25% shorter axial length without sacrificing torque, output power, and efficiency is achieved. In addition, the influences of major design parameters, such as stator slot, rotor slot and pole numbers, stack length, number of turns per phase, machine geometric parameters, etc., on the flux-weakening characteristics are investigated. It has been concluded that the major design parameters have a considerable effect on the electromagnetic performance. However, among those parameters, the influences of pole number and stack length together with the number of turns on flux-weakening characteristics are significant.


Sign in / Sign up

Export Citation Format

Share Document