Wafer damage issue study by heavy Al wire wedge bonding

2014 ◽  
Vol 31 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Hanmin Zhang ◽  
Ming Hu ◽  
Fei Zong ◽  
Baoguan Yin ◽  
Denghong Ye ◽  
...  

Purpose – The purpose of this paper was to attempt to confirm the root cause of wafer damage issue by heavy Al wire wedge bonding and propose some permanent solutions for it. Design/methodology/approach – The infra red–optical beam-induced resistance change (IR-OBIRCH) analysis defines the position of an abnormal hotspot. A cross section and an scanning electron microscope (SEM) confirmed the wafer damage issue and its position. Based on the position of wafer damage, the wedge tool with different life and Al buildup was checked found to be on the wedge tool. Finite element analysis (FEA) modeling analysis and simulation experiment guarantee the Al buildup, and low wedge deformation thickness (WDT) can cause the wafer damage issue. Finally, design of experiment (DOE) experiments are designed to optimize wedge tool dimension and wedge-bond parameters to eliminate wafer damage issue. Findings – Wafer damage issue caused the Vpwr-OUTPUT leakage issue by IR-OBIRCH analysis. Al buildup was found on wedge tool with different life and its size gets larger along with the increase in wedge tool life. Low WDT and bigger Al buildup can cause the wafer damage. Designing new wedge tool and parameters optimization can increase WDT. Research limitations/implications – Because of the limitation of time and resources, finite element method (FEM) modeling and wedge tool dimension could not be studied more deeply. Originality/value – This paper sets an example on how to find out the root cause of wafer damage by a step-by-step analysis and put forward a quick solution accordingly for the issue.

Author(s):  
Mohammad Reza Naeimi ◽  
Karim Abbaszadeh ◽  
Reza Nasiri-Zarandi

Purpose High torque ripple is the significant challenge of the synchronous reluctance machine in household electric appliances, electric vehicles and so on. This paper aims to present an optimized design of a synchronous reluctance rotor structure to reduce the torque ripple with improving the average torque by the particle swarm optimization (PSO) algorithm. Design/methodology/approach The optimization of rotor geometries has been investigated. Most of the rotor parameters such as the width of iron parts, the width of barriers along d and q axes and the endpoint angle of barriers are optimized by a new method using the PSO algorithm. After optimization, the resulted optimum design along with the initial design is simulated by two-dimensional finite element method and results are compared. At the end, a prototype is constructed and tested. Results of the experiment are compared with the simulation results where acceptable adoption is yielded. Findings Minimizing the torque ripple without losing the average torque is an important achievement of the synchronous reluctance motor (SynRM) optimization; furthermore, the finite element analysis and experimental results indicate that the torque ripple of the SynRM with the optimized rotor is reduced significantly. Also, increasing the number of optimization parameters can effectively obtain an accurate shape of the SynRM barrier. Originality/value Because of the high number of parameters in synchronous reluctance rotors, the majority of proposed optimizations did not use all geometric parameters of the rotor and tried to simplify the optimization by ignoring several optimization parameters or reducing the number of flux barriers. In this optimization, most of the rotor parameters have been used to achieve the precise barrier shape with the aim of reducing the torque ripple in SynRM.


2015 ◽  
Vol 32 (7) ◽  
pp. 2100-2119 ◽  
Author(s):  
Ali Johari ◽  
Jaber Rezvani Pour ◽  
Akbar Javadi

Purpose – Liquefaction of soils is defined as significant reduction in shear strength and stiffness due to increase in pore water pressure. This phenomenon can occur in static (monotonic) or dynamic loading patterns. However, in each pattern, the inherent variability of the soil parameters indicates that this problem is of a probabilistic nature rather than being deterministic. The purpose of this paper is to present a method, based on random finite element method, for reliability assessment of static liquefaction of saturated loose sand under monotonic loading. Design/methodology/approach – The random finite element analysis is used for reliability assessment of static liquefaction of saturated loose sand under monotonic loading. The soil behavior is modeled by an elasto-plastic effective stress constitutive model. Independent soil parameters including saturated unit weight, peak friction angle and initial plastic shear modulus are selected as stochastic parameters which are modeled using a truncated normal probability density function (pdf). Findings – The probability of liquefaction is assessed by pdf of modified pore pressure ratio at each depth. For this purpose pore pressure ratio is modified for monotonic loading of soil. It is shown that the saturated unit weight is the most effective parameter, within the selected stochastic parameters, influencing the static soil liquefaction. Originality/value – This research focuses on the reliability analysis of static liquefaction potential of sandy soils. Three independent soil parameters including saturated unit weight, peak friction angle and initial plastic shear modulus are considered as stochastic input parameters. A computer model, coded in MATLAB, is developed for the random finite element analysis. For modeling of the soil behavior, a specific elasto-plastic effective stress constitutive model (UBCSAND) was used.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


2019 ◽  
Vol 17 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Hafida Kahoul ◽  
Samira Belhour ◽  
Ahmed Bellaouar ◽  
Jean Paul Dron

Purpose This paper aims to present the fatigue life behaviour of upper arm suspension. The main objectives are to predict the fatigue life of the component and to identify the critical location. In this analysis, three aluminium alloys were used for the suspension, and their fatigue life was compared to select the suitable material for the suspension arm. Design/methodology/approach CAD model was prepared using Solid Works software, and finite element analysis was done using ANSYS 14.0 software by importing the Parasolid file to ANSYS. The model is subjected to loading and boundary conditions; the authors consider a vertical force with constant amplitude applied at the bushing that connected to the tire, the others two bushing that connected to the body of the car are constraint. Tetrahedral elements given enhanced results as compared to other types of elements; therefore, the elements (TET 10) are used. The maximum principal stress was considered in the linear static analysis, and fatigue analysis was done using strain life approach. Findings Life and damage are evaluated and the critical location was considered at node 63,754. From the fatigue analysis, aluminium alloys 7175-T73 (Al 90%-Zn 5.6%-Mg 2.5% -… …) and 2014-T6 (Al 93.5%-Cu 4.4%-Mg 0.5%… …) present a similar behaviour as compared to 6061-T6 (Al 97.9%-Mg 1.0%-Si 0.6%… … .); in this case of study, these lather are considered to be the materials of choice to manufacture the suspension arms; but 7175-T73 aluminium alloys remain the material with a better resistance to fatigue. Originality/value By the finite element analysis method and assistance of ANSYS software, it is able to analyse the different car components from varied aspects such as fatigue, and consequently save time and cost. For further research, the experimental works under controlled laboratory conditions should be done to determine the validation of the result from the software analysis.


2014 ◽  
Vol 24 (8) ◽  
pp. 1888-1905 ◽  
Author(s):  
M.M. Rahman ◽  
Hakan Oztop ◽  
S. Mekhilef ◽  
R. Saidur ◽  
A. Chamkha ◽  
...  

Purpose – The purpose of this paper is to examine the effects of thick wall parameters of a cavity on combined convection in a channel. In other words, conjugate heat transfer is solved. Design/methodology/approach – Galerkin weighted residual finite element method is used to solve the governing equations of mixed convection. Findings – The streamlines, isotherms, local and average Nusselt numbers are obtained and presented for different parameters. It is found heat transfer is an increasing function of dimensionless thermal conductivity ratio. Originality/value – The literature does not have mixed convection and conjugate heat transfer problem in a channel with thick walled cavity.


2016 ◽  
Vol 33 (8) ◽  
pp. 2421-2447 ◽  
Author(s):  
João Paulo Pascon

Purpose The purpose of this paper is to deal with large deformation analysis of plane beams composed of functionally graded (FG) elastic material with a variable Poisson’s ratio. Design/methodology/approach The material is assumed to be linear elastic, with a Poisson’s ratio varying according to a power law along the thickness direction. The finite element used is a plane beam of any-order of approximation along the axis, and with four transverse enrichment schemes, which can describe constant, linear, quadratic and cubic variation of the strain along the thickness direction. Regarding the constitutive law, five materials are adopted: two homogeneous limiting cases, and three intermediate FG cases. The effect of both finite element kinematics and distribution of Poisson’s ratio on the mechanical response of a cantilever is investigated. Findings In accordance with the scientific literature, the second scheme, in which the transverse strain is linearly variable, is sufficient for homogeneous long (or thin) beams under bending. However, for FG short (or moderate thick) beams, the third scheme, in which the transverse strain variation is quadratic, is needed for a reliable strain or stress distribution. Originality/value In the scientific literature, there are several studies regarding nonlinear analysis of functionally graded materials (FGMs) via finite elements, analysis of FGMs with constant Poisson’s ratio, and geometrically linear problems with gradually variable Poisson’s ratio. However, very few deal with finite element analysis of flexible beams with gradually variable Poisson’s ratio. In the present study, a reliable formulation for such beams is presented.


Sensor Review ◽  
2019 ◽  
Vol 39 (4) ◽  
pp. 598-603 ◽  
Author(s):  
Muyang Li ◽  
Mahtab Assadian ◽  
Maziar Ramezani ◽  
Kean C. Aw

Purpose This paper aims to propose the need for soft and flexible sensors that actually measure the turning angle and torque of a joint. Conventional rigid angular/torque sensors have compatibility issues in wearable applications due to its bulkiness, non-compliance and high rigidity. Design/methodology/approach The sensing element of the sensor is based on carbon black (CB)/Ecoflex composite, deposited via extrusion printing technique. A simple finite element analysis was used to explain the non-linearity and non-symmetricity behaviours of the sensor. Findings This prototype can measure the angular rotation up to ±180° and a maximum torque value of 0.6 Nm. The geometry of the printed CB/Ecoflex composite as piezoresistive trace has a significant effect on the output (resistance change) response. Originality/value This research explored an extrusion printing techniques that allow customization to construct a soft piezoresistive strain sensor, which can be used as an angular/torque sensor.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091868
Author(s):  
Shuang Jing ◽  
Anle Mu ◽  
Yi Zhou ◽  
Ling Xie

The seal is the key part of the cone bit. To reduce the failure probability, a new seal was designed and studied. The sealing performance and structure optimization of the X-O composite seal was analyzed and compared by finite-element analysis. The stress and contact pressure were analyzed to establish the main structural parameters that affect sealing performance and the direction of the structural optimization. By optimizing these structural parameters, including the height, and the radial and axial arc radii, an optimized structure is obtained. The results show that (1) the X-O composite seal can meet the seal requirement, the excessive height of the X seal ring is the root cause of the uneven distribution of stress, pressure, and distortion. (2) A new seal structure is obtained, the distribution of pressure and stress is reasonable and even, and the values of stress and pressure are reduced to avoid distortion and reduce the wear. Finally, the field test results of the X-O composite seal of cone bit showed that the service life of the bit bearing increased by 16% on average and the drilling efficiency increased by 11% on average compared with the original cone bit with the O seal ring.


Author(s):  
Robert Lazor ◽  
Brock Bolton ◽  
Aaron Dinovitzer

Full encirclement repair sleeves with fillet-welded ends are often used as permanent repairs on pipelines to reinforce areas with defects, such as cracks or corrosion. In-service failures have occurred at reinforcing sleeves as a result of defects associated with the sleeve welds, such as hydrogen-induced cracks and undercut at the fillet welds, inadequate weld size, and sleeve longitudinal seam ruptures. This work was undertaken to support the development of tools for sleeve design and for conducting an engineering assessment to determine the tolerable dimensions of flaw indications at full encirclement repair sleeves. In particular, the project was intended to validate the stresses estimated using finite element analysis (FEA) models against actual in-service loading conditions experienced at reinforcing sleeves. The experimental work focused on the collection of full-scale experimental data describing pipe and sleeve strains for the following field and laboratory conditions: • Strains induced by sleeve welding, • Strains induced by pressurization of the sleeved pipe, • Strains induced by pressurization of the sleeved pipe and the annulus between the pipe and sleeve. Finite element models of the field and laboratory sleeved pipe segments were developed and subjected to the same applied loading conditions as the full-scale sleeved pipe segments. Comparisons of the measured strains against those estimated using FEA were completed to determine the ability of the models to predict the behaviour of the sleeved pipe segments. Comparisons were made to illustrate the relative strain levels and deformation trends, the accuracies of the strain predictions and trends in changes with pressure, the differences in behaviours between tight and loose fitting sleeves, and the effects of pressurizing the annulus between the pipe wall and sleeve. The analysis of the field data and FEA modeling predictions led to several conclusions regarding to use of numerical models for predicting sleeved pipe behaviour and weld flaw acceptance: • FEA results demonstrated behaviours that were consistent with full scale data, • Trends in the FEA predicted strains agreed with the full-scale data, • FEA models describing the effects of gaps between the pipe and sleeve and annulus pressurization agreed with field experience and engineering judgment, • Evaluation of the significance of root and toe flaws can be completed by extending the models validated in this work.


2017 ◽  
Vol 34 (2) ◽  
pp. 251-271 ◽  
Author(s):  
Hongxiang Tang ◽  
Yuhui Guan ◽  
Xue Zhang ◽  
Degao Zou

Purpose This paper aims to develop a finite element analysis strategy, which is suitable for the analysis of progressive failure that occurs in pressure-dependent materials in practical engineering problems. Design/methodology/approach The numerical difficulties stemming from the strain-softening behaviour of the frictional material, which is represented by a non-associated Drucker–Prager material model, is tackled using the Cosserat continuum theory, while the mixed finite element formulation based on Hu–Washizu variational principle is adopted to allow the utilization of low-order finite elements. Findings The effectiveness and robustness of the low-order finite element are verified, and the simulation for a real-world landslide which occurred at the upstream side of Carsington embankment in Derbyshire reconfirms the advantages of the developed elastoplastic Cosserat continuum scheme in capturing the entire progressive failure process when the strain-softening and the non-associated plastic law are involved. Originality/value The permit of using low-order finite elements is of great importance to enhance computational efficiency for analysing large-scale engineering problems. The case study reconfirms the advantages of the developed elastoplastic Cosserat continuum scheme in capturing the entire progressive failure process when the strain-softening and the non-associated plastic law are involved.


Sign in / Sign up

Export Citation Format

Share Document