The layout of Boussinesq couple-stress fluid flow over an exponentially stretching sheet with slip in porous space subject to a variable magnetic field

2020 ◽  
Vol 16 (5) ◽  
pp. 1131-1154
Author(s):  
S. Das ◽  
R.R. Patra ◽  
R.N. Jana

PurposeThe purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically conducting Boussinesq couple-stress fluid induced by an exponentially stretching sheet embedded in a porous medium under the effect of the magnetic field of the variable kind. The heat transfer phenomenon is accounted for under thermal radiation, Joule and viscous dissipation effects.Design/methodology/approachThe governing nonlinear partial differential equations are transformed to the nonlinear ordinary differential equations (ODEs) by using some appropriate dimensionless variables and then the consequential nonlinear ODEs are solved numerically by making the use of the well-known shooting iteration technique along with the standard fourth-order Runge–Kutta integration scheme. The impact of emerging flow parameters on velocity and temperature profiles, streamlines, local skin friction coefficient and Nusselt number are described comprehensively through graphs and tables.FindingsResults reveal that the velocity profile is observed to diminish considerably within the boundary layer in the presence of a magnetic field and slip condition. The enhanced radiation parameter is to decline the temperature field. The slip effect is favorable for fluid flow.Originality/valueTill now, slip effect on Boussinesq couple-stress fluid over an exponentially stretching sheet embedded in a porous medium has not been explored. The present results are validated with the previously published study and found to be highly satisfactory.

2018 ◽  
Vol 15 (1) ◽  
pp. 148-155
Author(s):  
W. Stanly ◽  
R. Vasanthakumari

Purpose The purpose of this paper is used to study the combined effect of solute gradient and magnetic field on dusty couple-stress fluid in the presence of rotation through a porous medium. Design/methodology/approach The perturbation technique (experimental method) is applied in this study. Findings For the case of stationary convection, solute gradient and rotation have stabilizing effect, whereas destabilizing effect is found in dust particles in the system. Couple stress and medium permeability both have dual character to its stabilizing effect in the absence of magnetic field and rotation. Magnetic field succeeded in establishing a stabilizing effect in the absence of rotation. Originality/value The results are discussed by allowing one variable to vary and keeping other variables constant, as well as by drawing graphs.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 867 ◽  
Author(s):  
Muhammad Ahmad ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Ali Farooq ◽  
Rashid Nawaz ◽  
...  

In the last decade, nanoparticles have provided numerous challenges in the field of science. The nanoparticles suspended in various base fluids can transform the flow of fluids and heat transfer characteristics. In this research work, the mathematical model is offered to present the 3D magnetohydrodynamics Darcy–Forchheimer couple stress nanofluid flow over an exponentially stretching sheet. Joule heating and viscous dissipation impacts are also discussed in this mathematical model. To examine the relaxation properties, the proposed model of Cattaneo–Christov is supposed. For the first time, the influence of temperature exponent is scrutinized via this research article. The designed system of partial differential equations (PDE’s) is transformed to set of ordinary differential equations (ODE’s) by using similarity transformations. The problem is solved analytically via homotopy analysis technique. Effects of dimensionless couple stress, magnetic field, ratio of rates, porosity, and coefficient of inertia parameters on the fluid flow in x- and y-directions have been examined in this work. The augmented ratio of rates parameter upsurges the velocity profile in the x-direction. The augmented magnetic field, porosity parameter, coefficient of inertia, and couple stress parameter diminishes the velocity field along the x-direction. The augmented magnetic field, porosity parameter, coefficient of inertia, ratio of rates parameter, and couple stress parameter reduces the velocity field along the y-axis. The influences of time relaxation, Prandtl number, and temperature exponent on temperature profile are also discussed. Additionally, the influences of thermophoresis parameter, Schmidt number, Brownian motion parameter, and temperature exponent on fluid concentration are explained in this work. For engineering interests, the impacts of parameters on skin friction and Nusselt number are accessible through tables.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


2011 ◽  
Vol 66 (5) ◽  
pp. 304-310 ◽  
Author(s):  
Pardeep Kumar ◽  
Hari Mohan

The double-diffusive convection in a compressible couple-stress fluid layer heated and soluted from below through porous medium is considered in the presence of a uniform vertical magnetic field. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, stable solute gradient, magnetic field, and couple-stress postpone the onset of convection whereas medium permeability hastens the onset of convection. Graphs have been plotted by giving numerical values to the parameters to depict the stability characteristics. The stable solute gradient and magnetic field introduce oscillatory modes in the system, which were non-existent in their absence. A condition for the system to be stable is obtained by using the Rayleigh-Ritz inequality. The sufficient conditions for the non-existence of overstability are also obtained.


Sign in / Sign up

Export Citation Format

Share Document