scholarly journals Darcy–Forchheimer MHD Couple Stress 3D Nanofluid over an Exponentially Stretching Sheet through Cattaneo–Christov Convective Heat Flux with Zero Nanoparticles Mass Flux Conditions

Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 867 ◽  
Author(s):  
Muhammad Ahmad ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Ali Farooq ◽  
Rashid Nawaz ◽  
...  

In the last decade, nanoparticles have provided numerous challenges in the field of science. The nanoparticles suspended in various base fluids can transform the flow of fluids and heat transfer characteristics. In this research work, the mathematical model is offered to present the 3D magnetohydrodynamics Darcy–Forchheimer couple stress nanofluid flow over an exponentially stretching sheet. Joule heating and viscous dissipation impacts are also discussed in this mathematical model. To examine the relaxation properties, the proposed model of Cattaneo–Christov is supposed. For the first time, the influence of temperature exponent is scrutinized via this research article. The designed system of partial differential equations (PDE’s) is transformed to set of ordinary differential equations (ODE’s) by using similarity transformations. The problem is solved analytically via homotopy analysis technique. Effects of dimensionless couple stress, magnetic field, ratio of rates, porosity, and coefficient of inertia parameters on the fluid flow in x- and y-directions have been examined in this work. The augmented ratio of rates parameter upsurges the velocity profile in the x-direction. The augmented magnetic field, porosity parameter, coefficient of inertia, and couple stress parameter diminishes the velocity field along the x-direction. The augmented magnetic field, porosity parameter, coefficient of inertia, ratio of rates parameter, and couple stress parameter reduces the velocity field along the y-axis. The influences of time relaxation, Prandtl number, and temperature exponent on temperature profile are also discussed. Additionally, the influences of thermophoresis parameter, Schmidt number, Brownian motion parameter, and temperature exponent on fluid concentration are explained in this work. For engineering interests, the impacts of parameters on skin friction and Nusselt number are accessible through tables.

Author(s):  
Siti Nur Haseela Izani ◽  
Anati Ali

An analysis has been carried out to study a problem of the chemical reaction effects on magnetohydrodynamics (MHD) mixed convective boundary layer flow with a fluid-particle suspension due to an exponentially stretching sheet. The effects of magnetic field and mass transfer are taken into account for the first time in the dusty fluid over the exponentially stretching sheet. The governing partial nonlinear differential equations corresponding to the momentum, energy and concentration are converted into a system of ordinary differential equations by using similarity transformations. The relevant dimensionless equations are then solved numerically using Runge-Kutta-Fehlberg fourth fifth order method (RKF45) with the help of Maple symbolic software. The influence of physical parameters on the velocity, temperature and concentration distributions for both phases were discussed numerically and presented in details through plotted graphs and tables. Also, the numerical values of skin friction coefficient, Nusselt and Sherwood number of the governing parameters are analyzed and discussed in details. The outcomes show that the reaction parameter affects the fluid flow whereas the magnetic field retards the fluid flow. A comparative study of the present results with the previous study provides an excellent agreement.


2020 ◽  
Vol 16 (5) ◽  
pp. 1131-1154
Author(s):  
S. Das ◽  
R.R. Patra ◽  
R.N. Jana

PurposeThe purpose of this study is to present the significance of Joule heating, viscous dissipation, magnetic field and slip condition on the boundary layer flow of an electrically conducting Boussinesq couple-stress fluid induced by an exponentially stretching sheet embedded in a porous medium under the effect of the magnetic field of the variable kind. The heat transfer phenomenon is accounted for under thermal radiation, Joule and viscous dissipation effects.Design/methodology/approachThe governing nonlinear partial differential equations are transformed to the nonlinear ordinary differential equations (ODEs) by using some appropriate dimensionless variables and then the consequential nonlinear ODEs are solved numerically by making the use of the well-known shooting iteration technique along with the standard fourth-order Runge–Kutta integration scheme. The impact of emerging flow parameters on velocity and temperature profiles, streamlines, local skin friction coefficient and Nusselt number are described comprehensively through graphs and tables.FindingsResults reveal that the velocity profile is observed to diminish considerably within the boundary layer in the presence of a magnetic field and slip condition. The enhanced radiation parameter is to decline the temperature field. The slip effect is favorable for fluid flow.Originality/valueTill now, slip effect on Boussinesq couple-stress fluid over an exponentially stretching sheet embedded in a porous medium has not been explored. The present results are validated with the previously published study and found to be highly satisfactory.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


2018 ◽  
Vol 388 ◽  
pp. 77-95 ◽  
Author(s):  
M. Krishna Murthy

Magnetohydrodynamic (MHD) three dimensional boundary layer flow of Casson fluid over an unsteady exponentially stretching sheet with slip conditions is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and are solved numerically using shooting technique. The effects of pertinent parameters on velocity and temperature distributions are shown in graphically. The skin friction coefficient and the Nusselt number are computed numerically. We noticed that Casson parameter increases then the velocities and temperature decrease.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Muhmmad Sajid ◽  
Wasim Awan ◽  
Muhammad Rafique ◽  
Wajid Aziz ◽  
...  

Radiation effects on magnetohydrodynamic (MHD) boundary-layer flow and heat transfer characteristic through a porous medium due to an exponentially stretching sheet have been studied. Formulation of the problem is based upon the variable thermal conductivity. The heat transfer analysis is carried out for both prescribed surface temperature (PST) and prescribed heat flux (PHF) cases. The developed system of nonlinear coupled partial differential equations is transformed to nonlinear coupled ordinary differential equations by using similarity transformations. The series solutions for the transformed of the transformed flow and heat transfer problem were constructed by homotopy analysis method (HAM). The obtained results are analyzed under the influence of various physical parameters.


2016 ◽  
Vol 21 (3) ◽  
pp. 581-592 ◽  
Author(s):  
A.S. Idowu ◽  
S. Usman

Abstract Radiation on a magnetohydrodynamic (MHD) boundary layer flow of a viscous fluid over an exponentially stretching sheet was considered together with its effects. The new technique of homotopy analysis method (nHAM) was used to obtain the convergent series expressions for velocity and temperature, where the governig system of partial differential equations was transformed into ordinary differential equations. The interpretation of these expressions is shown physically through graphs. We observed that the effects of the Prandtl and magnetic number act in opposite to each other on the temperature.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Stanford Shateyi ◽  
Gerald T. Marewo

Abstract We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.


2020 ◽  
Vol 98 (8) ◽  
pp. 732-741 ◽  
Author(s):  
Muhammad Naveed Khan ◽  
Sohail Nadeem

The heat and mass transfer of unsteady two-dimensional flow of a bio-convective non-Newtonian Maxwell nanofluid past an exponentially stretching sheet is presented. A viscous dissipation and external magnetic field along multiple slip conditions and chemical reactions are incorporated. The governing partial differential equations are reduced to the system of ordinary differential equations by applying suitable transformations. Using the bvp4c -shooting technique, we were able to solve the boundary value problem. The influence of the obtained parameters are deliberated graphically on the velocity, concentration, temperature, and microorganism profile. The tabulated values of skin friction, Nusselt number, mass flux rate, and microorganism rate along various parameters are computed and examined. The findings show that the value of the skin friction, Nusselt number, Sherwood number, and microorganism number decline due to enhancement in the time relaxation parameter.


Sign in / Sign up

Export Citation Format

Share Document