Synthesis of new azobenzene dyes clubbed with thiazolidinone moiety and their applications

2020 ◽  
Vol 49 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Hatem E. Gaffer ◽  
Ismail I. Althagafi

Purpose The purpose of this paper is to synthesize some new azobenzene dyestuffs clubbed with thiazolidinone moiety and their solicitation in dyeing polyester fabrics representing their antibacterial evaluation. Design/methodology/approach Herein, the authors report the synthesis of new thiazolidinone moiety after the coupling of diazotized 4-aminoacetophenone with resorcinol. The newly synthesized dyes were characterized by IR, elemental analysis, mass spectroscopy and proton nuclear magnetic resonance (1H NMR) spectral studies. The characteristics of dyeing of these dyestuffs were evaluated at optimum conditions. Concurrent with dyeing of polyester fabric for synthesized dyes with their antibacterial activity was estimated. Antimicrobial activity of the dyed fabrics at different concentrations was evaluated against gram-positive and gram-negative bacteria. Findings Synthesized azobenzene dyestuffs clubbed with thiazolidinone dyes were applied on polyester fabrics. It was remarked that the modified dyes exhibited better colourfastness properties. Furthermore, the synthesized dyes revealed antimicrobial activity against gram-positive and gram-negative bacteria. Research limitations/implications The synthesized azobenzene dyes for polyester dyeing were not bore earlier. Practical implications The azobenzene dyes were accountable for giving improved colourfastness properties on polyester fabrics. Social implications The synthesized azobenzene derivatives are sensibly expensive and applicable dyes accompanied with good antimicrobial and anticancer activities. Originality/value A common process could be affording textiles of colour and antibacterial assets. The newly synthesized dyes containing thiazolidinone moieties with azobenzene coupler showed interesting disperse colourant for polyester with good antibacterial activity.

2012 ◽  
Vol 9 (1) ◽  
pp. 481-486
Author(s):  
K. Anuradha ◽  
R. Rajavel

Novel Cu(II),Ni(II) and VO(II) complexes are synthesized with N1,N4-bis(2-aminobenzylidene)benzene-1,4-diamine (L). Complexes were characterized by elemental analysis, molar conductance, IR, UV and EPR. Spectral studies reveals a square planner geomentry for Cu(II), Ni(II) complexes and square pyramidal for VO(II) complex. The ligand and its complexes were also evaluated against the growth of gram positive bacteria and gram negative bacteria.


2020 ◽  
Vol 10 (4) ◽  
pp. 639-654
Author(s):  
А. A. Meleshko ◽  
A. G. Afinogenova ◽  
G. E. Afinogenov ◽  
A. A. Spiridonova ◽  
V. P. Tolstoy

Metal and metal oxide nanoparticles (NPs) are promising antibacterial agents. They have a broad antimicrobial activity against both Gram-positive and Gram-negative bacteria, viruses, and protozoans. The use of NPs reduces the possibility of the microbial resistance development. This review briefly shows the general mechanisms and the main factors of antibacterial activity of NPs. In this article, a comprehensive review of the recent researches in the field of new antimicrobial agents with superior long-term bactericidal activity and low toxicity is provided. The review gives the examples of synthesis of double and triple nanocomposites based on following oxides: CuO, ZnO, Fe3O4, Ag2O, MnO2, etc. including metal and nonmetal doped nanocomposites (for example with Ag, Ce, Cr, Mn, Nd, Co, Sn, Fe, N, F, etc.). Compared with bactericidal action of individual oxides, the nanocomposites demonstrate superior antibacterial activity and have synergistic effects. For example, the antimicrobial activity of ZnO against both Gram-positive and Gram-negative bacteria was increased by -100% by formation of triple nanocomposites ZnO—MnO2—Cu2O or ZnO—Ag2O—Ag2S. Similar effect was showed for Ce-doped ZnO and Zn-doped CuO. The present article also provides the examples of nanocomposites containing NPs and organic (chitosan, cellulose, polyvinylpyrrolidone, biopolymers, etc.) or inorganic materials with special structure (graphene oxide, TiO2 nanotubes, silica) which demonstrate controlled release and longterm antibacterial activity. All of the considered nanocomposites and their combinations have a pronounced long-term antimicrobial effect including against antibiotic-resistant strains. They are able to prevent the formation of microbial biofilms on biotic and abiotic surfaces, have low toxicity to eukaryotic cells, demonstrate anti-inflammatory and woundhealing properties in compositions with polymers (sodium alginate, collagen, polyvinylpyrrolidone, etc.). The use of nanoscale systems can solve several important practical problems at the same time: saving of long-term antimicrobial activities while reducing the number of compounds, creation of new antimicrobial agents with low toxicity and reduced environmental impact, development of new biocidal materials, including new coatings for effective antimicrobial protection of medical devices.


2019 ◽  
Vol 90 (3-4) ◽  
pp. 376-385
Author(s):  
Aisha SM Hossan

The current study targets to synthesize some new sulfonamido-hydroxythiophene dyes for dyeing polyester fabrics with estimated antibacterial activity. The structure of sulfonamide dyes was adapted by conducting with sulfadimidine and sulfamethaxole through the coupling reaction. The synthesized derivatives were established by spectroscopic tools (Fourier transform infrared spectroscopy, proton nuclear magnetic resonance). Hydroxy-thiophene-containing sulfonamides were utilized for dyeing polyester fabric. The prepared sulfonamido-hydroxythiophene dyes were applied on polyester fabrics after establishing the optimum dye conditions, and afterward their dyeing properties, light, washing, perspiration, rubbing and sublimation fastness were determined. Meanwhile, the improved dyes demonstrated respectable fastness results and antibacterial properties against some gram-positive and gram-negative bacteria.


2019 ◽  
Vol 40 (4) ◽  
pp. 531-536
Author(s):  
Md. Sirajul Islam ◽  
Md. Mokhlesur Rahman ◽  
Md. Mizanur Rahaman

Abstract Amphibians, like some animals and plants, defend themselves against various pathogenic organisms by producing and secreting various peptides and small molecules from granular skin glands. In this study, we evaluated for the first time, the antibiotic activity of the skin secretions of 8 different frog species (Euphlyctis cyanophlyctis, E. hexadactylus, Fejervarya teraiensis, F. asmati, F. syhadrensis, Hoplobatrachus tigerinus, Microhyla ornata and Polypedates leucomystax) from Bangladesh. These secretions were collected by a nonlethal approach through chemical stimulation and the antibacterial activity was evaluated by broth macrodilution method against some Gram-positive and Gram-negative bacteria. Our study revealed that all the skin secretions (8 out of 8) from the selected frogs have antimicrobial activity against Gram-positive bacteria and 7 out of 8 skin secretions possess antibacterial activity against Gram-negative bacteria tested. Further analysis of data showed that these secretions are significantly more effective against Gram-positive bacteria than Gram-negative bacteria.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Mouna Bouzid ◽  
Raed Abdennabi ◽  
Mohamed Damak ◽  
Majed Kammoun

This paper describes the synthesis of a series of dihydroisoquinoline nitrones by isomerization of the corresponding oxaziridines. Nitrones4a–cwere obtained in excellent yields and high purity by a simple and effective method from the isomerization of oxaziridines. The synthesized compounds were also evaluated for their antibacterial activity against Gram-positive and Gram-negative bacteria and fungus.


Author(s):  
Ranganathan Kapilan

Wide range of plant extracts are used for medicinal purposes as they are very cheap, efficient, harmless and do not cause any side effects. Spices are parts of different plants and they add special aroma and taste to the food preparations. The aim of the study was to determine the antimicrobial activity of some important naturally grown spices against gram positive and gram negative pathogenic bacteria. Antibacterial activity of the spices was tested against gram positive bacteria Bacillus pumilus, Bacillus cereus and Staphylococcus aureus and gram negative bacteria Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa using aqueous, ethanolic, methanolic and liquid nutrient extracts. Among all the extracts tested alcoholic extracts of Cardamom (Elettaria cardamom), clove (Eugenia caryophyllus) and lemongrass (Cymbopogoncitratus) showed maximum antimicrobial activity against gram negative bacteria while alcoholic extract of Cardamom (Elettaria cardamom) and lemongrass (Cymbopogoncitratus) showed maximum activity against gram positive bacteria. All the spices tested in this study proved that they have antibacterial activity and the maximum activity index (1.39) was exhibited by the ethanol extract of cardamom against E.coli.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
H. D. Revanasiddappa ◽  
B. Vijaya ◽  
L. Shivakumar ◽  
K. Shiva Prasad

The new binuclear niobium(V) complexes of the type [[NbO(L)C4H4O6]2C4H4O6] (where L = DMH, IMH, IPH, FPH, TMT) were prepared with biologically important drugs and characterized by using elemental analysis; IR, 1H-NMR, and UV-Vis spectral studies, and thermogravimetric analysis. The molar conductance measurement of all the complexes in DMF solution corresponds to 1 : 1 electrolytic nature. All complexes were of the pure diamagnetic character and were found to have six-coordinate octahedral geometry. The antimicrobial activity of these complexes has been screened against two Gram-positive and two Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with controls. All the complexes inhibit the growth of both Gram-positive and Gram-negative bacteria to a competent level.


2019 ◽  
Vol 48 (4) ◽  
pp. 337-347 ◽  
Author(s):  
Hanna Abomelha

Purpose This study aims to the synthesis of some novel 4-arylazo-3-hydroxythiophene analogues containing sulphapyridine and sulphathiazole dyestuffs and studying their application in dyeing polyester fabrics and rendering their antibacterial efficacy. Design/methodology/approach Simultaneous dyeing and antibacterial finishing for polyester fabric using a new antibacterial disperse dye having a modified chemical structure to thiophene dyes were studied. Construction of the thiophene dyes was carried out by diazo-coupling of diazotized sulphonamide-containing heterocyclic rings sulphapyridine and sulphathiazole with ethyl α-phenylthiocarbamoyl-acetoacetate followed by cyclizing the produced 2-arylazo-thioacetanilide with various α-halogenated reagents. All newly synthesized compounds were characterized by elemental analysis and extensive study of their spectral data (IR and 1H-NMR). The dyeing characteristics of these thiophene dyestuffs were evaluated at optimum conditions. Antibacterial activities of the obtained thiophene dyes were studied against some Gram-positive and Gram-negative bacteria. Findings The synthesized thiophene-containing sulphonamides dyes were applied on polyester fabric. The modified dyes exhibited a good fastness properties and antibacterial efficacy against some Gram-positive and Gram-negative bacteria. Synthesized dyes showed higher antibacterial potency than the reference standard drug. Research limitations/implications Synthesis of these disperse azo dyes for textile dyeing had never been reported previously. Practical implications The dyestuffs derived from thiophene are reasonable azo disperse dyestuffs giving good all-round fastness properties on polyester fabrics. Originality/value Thiophene dyes are used for dyeing polyester fabrics with brilliant colour and good fastness properties. The presence of sulphonamides moieties increase their fastness properties and elevate their antibacterial properties. Moreover, they can be used as antimicrobial finish due to their bactericidal properties on dyed textiles. This work afforded a new thiophene colorant that can be used in many different uses like polyester packing, thread Surgery, blends and other uses in medical textile.


2009 ◽  
Vol 4 (12) ◽  
pp. 1934578X0900401 ◽  
Author(s):  
Luisa Pistelli ◽  
Alessandra Bertoli ◽  
Cecilia Noccioli ◽  
Jeanette Mendez ◽  
Rosa Anna Musmanno ◽  
...  

The EtOAc and n-BuOH extracts of Inga fendleriana inhibited Gram-positive, but not Gram-negative bacteria; a narrow spectrum of activity against Staphylococcus epidermidis was detected. The MIC values of the extracts ranged from 125 to 850 μg/mL. Quercetin 3-methylether, myricetin 3-O-rhamnoside and tricetin showed antibacterial activity against the same bacterial strains with MICs in the range from 31 to 250 μg/mL. In time-kill kinetic studies, the flavonoids showed bactericidal effects at the concentrations corresponding to four times the MICs.


2011 ◽  
Vol 56 (3) ◽  
pp. 1157-1161 ◽  
Author(s):  
Carol L. Fischer ◽  
David R. Drake ◽  
Deborah V. Dawson ◽  
Derek R. Blanchette ◽  
Kim A. Brogden ◽  
...  

ABSTRACTThere is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity—the sphingoid basesd-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid—against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P< 0.0001) for each bacterial species exceptSerratia marcescensandPseudomonas aeruginosa.d-Sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria exceptS. marcescensandP. aeruginosa(MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active againstStreptococcus sanguinis,Streptococcus mitis, andFusobacterium nucleatumbut not active againstEscherichia coli,Staphylococcus aureus,S. marcescens,P. aeruginosa,Corynebacterium bovis,Corynebacterium striatum, andCorynebacterium jeikeium(MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria exceptE. coli,S. marcescens, andP. aeruginosa(MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.


Sign in / Sign up

Export Citation Format

Share Document