Additive manufacturing of laser cutting nozzles by SLM: processing, finishing and functional characterization

2018 ◽  
Vol 24 (3) ◽  
pp. 562-583 ◽  
Author(s):  
Marco Anilli ◽  
Ali Gökhan Demir ◽  
Barbara Previtali

Purpose The purpose of this paper is to demonstrate the use of selective laser melting for producing single and double chamber laser cutting nozzles. The main aim is to assess a whole production chain composed of an additive manufacturing (AM) and consecutive finishing processes together. Beyond the metrological and flow-related characterization of the produced nozzles, functional analysis on the use of the produced nozzles are carried out through laser cutting experiments. Design/methodology/approach SLM experiments were carried out to determine the correct compensation factor to achieve a desired nozzle diameter on steel with known processibility by SLM and using standard nozzle geometries for comparative purposes. The produced nozzles are finished through electrochemical machining (ECM) and abrasive flow machining (AFM). The performance of nozzles produced via additive manufacturing (AM) are compared to conventional ones on an industrial laser cutting system through cutting experiments with a 6 kW fibre laser. The produced nozzles are characterized in terms of pressure drop and flow dynamics through Schlieren imaging. Findings The manufacturing chain was regulated to achieve 1 mm diameter nozzles after consecutive post processing. The average surface roughness could be lowered by approximately 80 per cent. The SLM produced single chamber nozzles would perform similarly to conventional nozzles during the laser cutting of 1 mm mild steel with nitrogen. The double chamber nozzles could provide complete cuts with oxygen on 5 mm-thick mild steel only after post-processing. Post-processing operations proved to decrease the pressure drop of the nozzles. Schlieren images showed jet constriction at the nozzle outlet on the as-built nozzles. Originality/value In this work, the use of an additive manufacturing process is assessed together with suitable finishing and functional analysis of the related application to provide a complete production and evaluation chain. The results show how the finishing processes should be allocated in an AM-based production chain in a broader vision. In particular, the results confirm the functionality for designing more complex nozzle geometries for laser cutting, exploiting the flexibility of SLM process.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahyar Khorasani ◽  
AmirHossein Ghasemi ◽  
Bernard Rolfe ◽  
Ian Gibson

Purpose Additive manufacturing (AM) offers potential solutions when conventional manufacturing reaches its technological limits. These include a high degree of design freedom, lightweight design, functional integration and rapid prototyping. In this paper, the authors show how AM can be implemented not only for prototyping but also production using different optimization approaches in design including topology optimization, support optimization and selection of part orientation and part consolidation. This paper aims to present how AM can reduce the production cost of complex components such as jet engine air manifold by optimizing the design. This case study also identifies a detailed feasibility analysis of the cost model for an air manifold of an Airbus jet engine using various strategies, such as computer numerical control machining, printing with standard support structures and support optimization. Design/methodology/approach Parameters that affect the production price of the air manifold such as machining, printing (process), feedstock, labor and post-processing costs were calculated and compared to find the best manufacturing strategy. Findings Results showed that AM can solve a range of problems and improve production by customization, rapid prototyping and geometrical freedom. This case study showed that 49%–58% of the cost is related to pre- and post-processing when using laser-based powder bed fusion to produce the air manifold. However, the cost of pre- and post-processing when using machining is 32%–35% of the total production costs. The results of this research can assist successful enterprises, such as aerospace, automotive and medical, in successfully turning toward AM technology. Originality/value Important factors such as validity, feasibility and limitations, pre-processing and monitoring, are discussed to show how a process chain can be controlled and run efficiently. Reproducibility of the process chain is debated to ensure the quality of mass production lines. Post-processing and qualification of the AM parts are also discussed to show how to satisfy the demands on standards (for surface quality and dimensional accuracy), safety, quality and certification. The original contribution of this paper is identifying the main production costs of complex components using both conventional and AM.


2021 ◽  
Vol 27 (11) ◽  
pp. 90-105
Author(s):  
Anton Wiberg ◽  
Johan Persson ◽  
Johan Ölvander

Purpose The purpose of this paper is to present a Design for Additive Manufacturing (DfAM) methodology that connects several methods, from geometrical design to post-process selection, into a common optimisation framework. Design/methodology/approach A design methodology is formulated and tested in a case study. The outcome of the case study is analysed by comparing the obtained results with alternative designs achieved by using other design methods. The design process in the case study and the potential of the method to be used in different settings are also discussed. Finally, the work is concluded by stating the main contribution of the paper and highlighting where further research is needed. Findings The proposed method is implemented in a novel framework which is applied to a physical component in the case study. The component is a structural aircraft part that was designed to minimise weight while respecting several static and fatigue structural load cases. An addition goal is to minimise the manufacturing cost. Designs optimised for manufacturing by two different AM machines (EOS M400 and Arcam Q20+), with and without post-processing (centrifugal finishing) are considered. The designs achieved in this study show a significant reduction in both weight and cost compared to one AM manufactured geometry designed using more conventional methods and one design milled in aluminium. Originality/value The method in this paper allows for the holistic design and optimisation of components while considering manufacturability, cost and component functionality. Within the same framework, designs optimised for different setups of AM machines and post-processing can be automatically evaluated without any additional manual work.


2017 ◽  
Vol 23 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Xuan Song ◽  
Zeyu Chen ◽  
Liwen Lei ◽  
Kirk Shung ◽  
Qifa Zhou ◽  
...  

Purpose Conventional machining methods for fabricating piezoelectric components such as ultrasound transducer arrays are time-consuming and limited to relatively simple geometries. The purpose of this paper is to develop an additive manufacturing process based on the projection-based stereolithography process for the fabrication of functional piezoelectric devices including ultrasound transducers. Design/methodology/approach To overcome the challenges in fabricating viscous and low-photosensitive piezocomposite slurry, the authors developed a projection-based stereolithography process by integrating slurry tape-casting and a sliding motion design. Both green-part fabrication and post-processing processes were studied. A prototype system based on the new manufacturing process was developed for the fabrication of green-parts with complex shapes and small features. The challenges in the sintering process to achieve desired functionality were also discussed. Findings The presented additive manufacturing process can achieve relatively dense piezoelectric components (approximately 95 per cent). The related property testing results, including X-ray diffraction, scanning electron microscope, dielectric and ferroelectric properties as well as pulse-echo testing, show that the fabricated piezo-components have good potentials to be used in ultrasound transducers and other sensors/actuators. Originality/value A novel bottom-up projection system integrated with tape casting is presented to address the challenges in the piezo-composite fabrication, including small curing depth and viscous ceramic slurry recoating. Compared with other additive manufacturing processes, this method can achieve a thin recoating layer (as small as 10 μm) of piezo-composite slurry and can fabricate green parts using slurries with significantly higher solid loadings. After post processing, the fabricated piezoelectric components become dense and functional.


2015 ◽  
Vol 21 (6) ◽  
pp. 705-715 ◽  
Author(s):  
M. Fantini ◽  
F. De Crescenzio ◽  
L. Ciocca ◽  
F. Persiani

Purpose – The purpose of this paper is to describe two different approaches for manufacturing pre-formed titanium meshes to assist prosthetically guided bone regeneration of atrophic maxillary arches. Both methods are based on the use of additive manufacturing (AM) technologies and aim to limit at the minimal intervention the bone reconstructive surgery by virtual planning the surgical intervention for dental implants placement. Design/methodology/approach – Two patients with atrophic maxillary arches were scheduled for bone augmentation using pre-formed titanium mesh with particulate autogenous bone graft and alloplastic material. The complete workflow consists of four steps: three-dimensional (3D) acquisition of medical images and virtual planning, 3D modelling and design of the bone augmentation volume, manufacturing of biomodels and pre-formed meshes, clinical procedure and follow up. For what concerns the AM, fused deposition modelling (FDM) and direct metal laser sintering (DMLS) were used. Findings – For both patients, a post-operative control CT examination was scheduled to evaluate the progression of the regenerative process and verify the availability of an adequate amount of bone before the surgical intervention for dental implants placement. In both cases, the regenerated bone was sufficient to fix the implants in the planned position, improving the intervention quality and reducing the intervention time during surgery. Originality/value – A comparison between two novel methods, involving AM technologies are presented as viable and reproducible methods to assist the correct bone augmentation of atrophic patients, prior to implant placement for the final implant supported prosthetic rehabilitation.


MRS Advances ◽  
2017 ◽  
Vol 2 (24) ◽  
pp. 1315-1321 ◽  
Author(s):  
Daniela Espinosa-Hoyos ◽  
Huifeng Du ◽  
Nicholas X. Fang ◽  
Krystyn J. Van Vliet

ABSTRACTMaterials processing and additive manufacturing afford exciting opportunities in biomedical research, including the study of cell-material interactions. However, some of the most efficient materials for microfabrication are not wholly suitable for biological applications, require extensive post-processing or exhibit high mechanical stiffness that limits the range of applications. Conversely, materials exhibiting high cytocompatibility and low stiffness require long processing times with typically decreased spatial resolution of features. Here, we investigated the use of hexanediol diacrylate (HDDA), a classic and efficient polymer for stereolithography, for oligodendrocyte progenitor cell (OPC) culture. We developed composite HDDA-polyethylene glycol acrylate hydrogels that exhibited high biocompatibility, mechanical stiffness in the range of muscle tissue, and high printing efficiency at ∼5 μm resolution.


2016 ◽  
Vol 22 (4) ◽  
pp. 660-675 ◽  
Author(s):  
Sajan Kapil ◽  
Prathamesh Joshi ◽  
Hari Vithasth Yagani ◽  
Dhirendra Rana ◽  
Pravin Milind Kulkarni ◽  
...  

Purpose In additive manufacturing (AM) process, the physical properties of the products made by fractal toolpaths are better as compared to those made by conventional toolpaths. Also, it is desirable to minimize the number of tool retractions. The purpose of this study is to describe three different methods to generate fractal-based computer numerical control (CNC) toolpath for area filling of a closed curve with minimum or zero tool retractions. Design/methodology/approach This work describes three different methods to generate fractal-based CNC toolpath for area filling of a closed curve with minimum or zero tool retractions. In the first method, a large fractal square is placed over the outer boundary and then rest of the unwanted curve is trimmed out. To reduce the number of retractions, ends of the trimmed toolpath are connected in such a way that overlapping within the existing toolpath is avoided. In the second method, the trimming of the fractal is similar to the first method but the ends of trimmed toolpath are connected such that the overlapping is found at the boundaries only. The toolpath in the third method is a combination of fractal and zigzag curves. This toolpath is capable of filling a given connected area in a single pass without any tool retraction and toolpath overlap within a tolerance value equal to stepover of the toolpath. Findings The generated toolpath has several applications in AM and constant Z-height surface finishing. Experiments have been performed to verify the toolpath by depositing material by hybrid layered manufacturing process. Research limitations/implications Third toolpath method is suitable for the hybrid layered manufacturing process only because the toolpath overlapping tolerance may not be enough for other AM processes. Originality/value Development of a CNC toolpath for AM specifically hybrid layered manufacturing which can completely fill any arbitrary connected area in single pass while maintaining a constant stepover.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
J. Norberto Pires ◽  
Amin S. Azar ◽  
Filipe Nogueira ◽  
Carlos Ye Zhu ◽  
Ricardo Branco ◽  
...  

Purpose Additive manufacturing (AM) is a rapidly evolving manufacturing process, which refers to a set of technologies that add materials layer-by-layer to create functional components. AM technologies have received an enormous attention from both academia and industry, and they are being successfully used in various applications, such as rapid prototyping, tooling, direct manufacturing and repair, among others. AM does not necessarily imply building parts, as it also refers to innovation in materials, system and part designs, novel combination of properties and interplay between systems and materials. The most exciting features of AM are related to the development of radically new systems and materials that can be used in advanced products with the aim of reducing costs, manufacturing difficulties, weight, waste and energy consumption. It is essential to develop an advanced production system that assists the user through the process, from the computer-aided design model to functional components. The challenges faced in the research and development and operational phase of producing those parts include requiring the capacity to simulate and observe the building process and, more importantly, being able to introduce the production changes in a real-time fashion. This paper aims to review the role of robotics in various AM technologies to underline its importance, followed by an introduction of a novel and intelligent system for directed energy deposition (DED) technology. Design/methodology/approach AM presents intrinsic advantages when compared to the conventional processes. Nevertheless, its industrial integration remains as a challenge due to equipment and process complexities. DED technologies are among the most sophisticated concepts that have the potential of transforming the current material processing practices. Findings The objective of this paper is identifying the fundamental features of an intelligent DED platform, capable of handling the science and operational aspects of the advanced AM applications. Consequently, we introduce and discuss a novel robotic AM system, designed for processing metals and alloys such as aluminium alloys, high-strength steels, stainless steels, titanium alloys, magnesium alloys, nickel-based superalloys and other metallic alloys for various applications. A few demonstrators are presented and briefly discussed, to present the usefulness of the introduced system and underlying concept. The main design objective of the presented intelligent robotic AM system is to implement a design-and-produce strategy. This means that the system should allow the user to focus on the knowledge-based tasks, e.g. the tasks of designing the part, material selection, simulating the deposition process and anticipating the metallurgical properties of the final part, as the rest would be handled automatically. Research limitations/implications This paper reviews a few AM technologies, where robotics is a central part of the process, such as vat photopolymerization, material jetting, binder jetting, material extrusion, powder bed fusion, DED and sheet lamination. This paper aims to influence the development of robot-based AM systems for industrial applications such as part production, automotive, medical, aerospace and defence sectors. Originality/value The presented intelligent system is an original development that is designed and built by the co-authors J. Norberto Pires, Amin S. Azar and Trayana Tankova.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ilse Valenzuela Matus ◽  
Jorge Lino Alves ◽  
Joaquim Góis ◽  
Augusto Barata da Rocha ◽  
Rui Neto ◽  
...  

Purpose The purpose of this paper is to prove and qualify the influence of textured surface substrates morphology and chemical composition on the growth and propagation of transplanted corals. Use additive manufacturing and silicone moulds for converting three-dimensional samples into limestone mortar with white Portland cement substrates for coral growth. Design/methodology/approach Tiles samples were designed and printed with different geometries and textures inspired by nature marine environment. Commercial coral frag tiles were analysed through scanning electron microscopy (SEM) to identify the main chemical elements. Raw materials and coral species were selected. New base substrates were manufactured and deployed into a closed-circuit aquarium to monitor the coral weekly evolution process and analyse the results obtained. Findings Experimental results provided positive statistical parameters for future implementation tests, concluding that the intensity of textured surface, interfered favourably in the coralline algae biofilm growth. The chemical composition and design of the substrates were determinant factors for successful coral propagation. Recesses and cavities mimic the natural rocks aspect and promoted the presence and interaction of other species that favour the richness of the ecosystem. Originality/value Additive manufacturing provided an innovative method of production for ecology restoration areas, allowing rapid prototyping of substrates with high complexity morphologies, a critical and fundamental attribute to guarantee coral growth and Crustose Coralline Algae. The result of this study showed the feasibility of this approach using three-dimensional printing technologies.


Sign in / Sign up

Export Citation Format

Share Document