Application of Fuzzy VIKOR for selection of rapid prototyping technologies in an agile environment

2014 ◽  
Vol 20 (6) ◽  
pp. 523-532 ◽  
Author(s):  
S. Vinodh ◽  
Sakthi Nagaraj ◽  
Jeya Girubha

Purpose – The purpose of this article is to report a research in which the applicability of Fuzzy VIKOR in selecting the appropriate rapid prototyping (RP) technologies in an agile environment was examined. Design/methodology/approach – Multi-criteria decision-making (MCDM) tool can be the best approach for selecting the RP technology because it can handle multiple criteria associated with the selection process. In the research reported in this paper, compromise-based MCDM ranking methodology, namely, Fuzzy VIKOR was used in an agile environment. The best RP technology to produce prototypes of pump impellers was found and the prototype was developed. Findings – In the case study reported in this paper, it was found that fused deposition modelling (FDM) is the best technique for manufacturing the prototypes of pump impeller. Thus, the application of Fuzzy VIKOR generated the solution, which was acceptable to the decision makers. Research limitations/implications – In certain situations, Fuzzy VIKOR methodology ends up with one or more solutions. Based on the acceptable advantage and acceptable stability conditions, the compromise solution needs to be derived. The solution derived from the study needs to be checked for practical feasibility by the decision makers. Practical implications – This case study was conducted in a pump impeller manufacturing unit. Therefore, appropriate RP technology will be selected by the organizations to produce the prototype of pump components. Thus, it implies that the results obtained from this study were validated in a manufacturing environment. Originality/value – Application of Fuzzy VIKOR for RP technology selection in the context of agile environment is the original contribution of this study.

2020 ◽  
Vol 26 (4) ◽  
pp. 669-687 ◽  
Author(s):  
Sathies T. ◽  
Senthil P. ◽  
Anoop M.S.

Purpose Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of additive manufacturing (AM) comes into existence and fused deposition modelling (FDM), is at the forefront of researches related to polymer-based additive manufacturing. The purpose of this paper is to summarize the research works carried on the applications of FDM. Design/methodology/approach In the present paper, an extensive review has been performed related to major application areas (such as a sensor, shielding, scaffolding, drug delivery devices, microfluidic devices, rapid tooling, four-dimensional printing, automotive and aerospace, prosthetics and orthosis, fashion and architecture) where FDM has been tested. Finally, a roadmap for future research work in the FDM application has been discussed. As an example for future research scope, a case study on the usage of FDM printed ABS-carbon black composite for solvent sensing is demonstrated. Findings The printability of composite filament through FDM enhanced its application range. Sensors developed using FDM incurs a low cost and produces a result comparable to those conventional techniques. EMI shielding manufactured by FDM is light and non-oxidative. Biodegradable and biocompatible scaffolds of complex shapes are possible to manufacture by FDM. Further, FDM enables the fabrication of on-demand and customized prosthetics and orthosis. Tooling time and cost involved in the manufacturing of low volume customized products are reduced by FDM based rapid tooling technique. Results of the solvent sensing case study indicate that three-dimensional printed conductive polymer composites can sense different solvents. The sensors with a lower thickness (0.6 mm) exhibit better sensitivity. Originality/value This paper outlines the capabilities of FDM and provides information to the user about the different applications possible with FDM.


2015 ◽  
Vol 21 (1) ◽  
pp. 56-69 ◽  
Author(s):  
M. Jiménez ◽  
L. Romero ◽  
M. Domínguez ◽  
M.M. Espinosa

Purpose – This paper aims to present an optimal prototyping technology for the manufacture of occlusal splints. Design/methodology/approach – To carry out this study, a comparative technique was used to analyze models obtained by different prototyping techniques. Subsequently, further tests were carried out with respect to the manufacturing of splints by means of thermoforming in a vacuum. This involved an analysis of the most important variables such as prototype material, geometric accuracy, surface finish and costs. Findings – It was found that there is a group of prototyping technologies that are suitable for the manufacture of the models used in the thermoforming of correction splints, the most appropriate technologies being based on ink jet printing (IJP-Objet), ultraviolet photo polymerization and fused deposition modelling due to the fact that they offer an optimal relationship between the cost and the quality of the model required for thermoforming. Practical implications – The application of rapid prototyping techniques in medicine makes the production of physical models from three-dimensional medical image processing and their subsequent use in different specialties possible. It also makes preoperative planning processes, the production of prostheses and the preparation of surgical templates possible, thereby offering a higher quality of diagnosis, safer surgery and cost and time savings compared to conventional manufacturing technologies. Originality/value – This paper suggests that there exists a group of prototyping technologies for the manufacture of splints that offer advantages over existing technologies. The results also suggest that, in many cases, the most expensive technology is not the most appropriate: there are other options that provide an optimal model in terms of the cost and the quality needed for thermoforming.


2017 ◽  
Vol 37 (2) ◽  
pp. 154-161
Author(s):  
Rupinder Singh ◽  
Sunpreet Singh

Purpose The present research work aims to study the friction coefficient in functionally graded rapid prototyping of Al–Al2O3 composite prepared via fused deposition modelling (FDM)-assisted investment casting (IC) process. The optimized settings of the process parameters (namely, filament proportion, volume of FDM pattern, density of FDM pattern, barrel finishing (BF) time, BF media weight and number of IC slurry layers) suggested in the present research work will help fabricate parts possessing higher frictional coefficient. Design/methodology/approach Initially, melt flow index (MFI) of two different proportions of Nylon6-Al–Al2O3 (to be used as an alternative FDM filament material) was tested on the melt flow indexer and matched with MFI of commercially used acrylonitrile–butadiene–styrene filament. After this, the selected proportions of Nylon6-Al–Al2O3 were prepared in the form of the FDM filament by using a single screw extruder. Further, this FDM filament has been used for developing sacrificial IC patterns in the existing FDM system which was barely finished to improve their surface finish. Castings developed were tested for their wear resistance properties on a pin-on-disc-type tribo-tester under dry conditions at sliding conditions to check their suitability as a frictional device for industrial applications. In the methodology part, Taguchi L18 orthogonal array was used to study the effect of selected process variables on the coefficient of friction (μ). Findings It has been found that filament proportion, volume of FDM pattern and density of FDM pattern have significantly affected the μ-values. Further, density of the FDM pattern was found to have 91.62 per cent contribution in obtaining μ-values. Scanning electron micrographs highlighted uniform distribution of Al2O3 particles in the Al-matrix at suggested optimized settings. Practical implications The present methodology shows the development of a functional graded material that consisted of surface reinforcement with Al2O3 particles, which could have applications for manufacturing friction surfaces such as clutch plates, brake drum, etc. Originality/value This paper describes the effect of process parameters on wear properties of the Al–Al2O3 composite developed as a functionally graded material by the FDM-based pattern in the IC process.


2015 ◽  
Vol 21 (6) ◽  
pp. 735-746 ◽  
Author(s):  
Janusz Domanski ◽  
Konstanty Skalski ◽  
Roman Grygoruk ◽  
Adrian Mróz

Purpose – The purpose of this paper is to present the methodology of a design process of new lumbar intervertebral disc implants with specific emphasis on the use of rapid prototyping technologies. The verification of functionality of artificial intervertebral discs is also given. The paper describes the attempt and preliminary research to evaluate the properties of the intervertebral disc implant prototypes manufactured with the use of different rapid prototyping technologies, i.e. FDM – fused deposition modelling, 3DP – 3D printing and SLM – selective laser melting. Design/methodology/approach – Based on the computed tomography (CT) scan data, the anatomical parameters of lumbar spine bone tissue were achieved, which were the bases for the design-manufacture process carried out with the use of computer-aided designing/computer-aided engineering/computer-aided manufacturing systems. In the intervertebral disc implant design process, three RP technologies: FDM, 3DP and SLM were used for solving problems related to the reconstruction of geometry and functionality of the disc. Some preliminary tests such as measurement of roughness and structural analyses of material of prototypes made by different prototyping technologies were performed. Findings – This paper allowed the authors to elaborate and patent two new intervertebral disc implants. Because the implant designs are parametrical ones with relation to lumbar bone tissue properties measured on CT scans, they can be also made for individual patients. We also compared some of the properties of intervertebral implants prototypes made with the use of FDM, 3DP and SLM technologies. Originality/value – The paper presents the new intervertebral disc implants and their manufacturing by rapid prototyping. The methodology of designing intervertebral disc implant is shown. Some features of the methodology make it useful for preoperative planning of intervertebral disc surgery, as well.


2017 ◽  
Vol 37 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Jaspreet Singh ◽  
Rupinder Singh ◽  
Harwinder Singh

Purpose This research work aims to make an effort to investigate the effect of fused deposition modelling (FDM) process parameters on the surface finish of acrylonitrile butadiene styrene (ABS) replicas (as pre-processing stage), followed by chemical vapor smoothing (CVS) process (as a post-processing stage) as a case study. Design/methodology/approach The Taguchi L18 orthogonal array has been used for optimizing process parameters of FDM and CVS processes. Findings This study highlights that orientation and part density, and the interaction between these two have a significant effect on the surface finish at the pre-processing stage of FDM. However, after post-processing with CVS, there is hardly any influence of pre-processing FDM parameters. Originality/value The study highlights that for improving the productivity of the FDM process, the parametric optimization of process may be made on the basis of production cost and time in place of surface finish of ABS replicas. The results obtained have been verified by performing the confirmation experiments.


2017 ◽  
Vol 31 (2) ◽  
pp. 192-206 ◽  
Author(s):  
Christina Holm-Petersen ◽  
Sussanne Østergaard ◽  
Per Bo Noergaard Andersen

Purpose Centralization, mergers and cost reductions have generally led to increasing levels of span of control (SOC), and thus potentially to lower leadership capacity. The purpose of this paper is to explore how a large SOC impacts hospital staff and their leaders. Design/methodology/approach The study is based on a qualitative explorative case study of three large inpatient wards. Findings The study finds that the nursing staff and their frontline leaders experience challenges in regard to visibility and role of the leader, e.g., in creating overview, coordination, setting-up clear goals, following up and being in touch. However, large wards also provide flexibility and development possibilities. Practical implications The authors discuss the implications of these findings for decision makers in deciding future SOC and for future SOC research. Originality/value Only few studies have qualitatively explored the consequences of large SOC in hospitals.


2015 ◽  
Vol 43 (3) ◽  
pp. 7-14 ◽  
Author(s):  
Jim Moffatt

Purpose – This case example looks at how Deloitte Consulting applies the Three Rules synthesized by Michael Raynor and Mumtaz Ahmed based on their large-scale research project that identified patterns in the way exceptional companies think. Design/methodology/approach – The Three Rules concept is a key piece of Deloitte Consulting’s thought leadership program. So how are the three rules helping the organization perform? Now that research has shown how exceptional companies think, CEO Jim Moffatt could address the question, “Does Deloitte think like an exceptional company?” Findings – Deloitte has had success with an approach that promotes a bias towards non-price value over price and revenue over costs. Practical implications – It’s critical that all decision makers in an organization understand how decisions that are consistent with the three rules have contributed to past success as well as how they can apply the rules to difficult challenges they face today. Originality/value – This is the first case study written from a CEO’s perspective that looks at how the Three Rules approach of Michael Raynor and Mumtaz Ahmed can foster a firm’s growth and exceptional performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mustafa Said Yurtyapan ◽  
Erdal Aydemir

PurposeEnterprise Resource Planning (ERP) software which is a knowledge-based design on the interconnective communication of business units and information share, ensures that business processes such as finance, production, purchasing, sales, logistics and human resources, are integrated and gathered under one roof. This integrated system allows the company to make fast and accurate decisions and increases its competitiveness. Therefore, for an enterprise, choosing the suitable ERP software is extremely important. The aim of this study is to present new research on the ERP software selection process by clarifying the uncertainties and find suitable software in a computational way.Design/methodology/approachERP selection problem design includes uncertainties on the expert opinions and the criteria values using intuitionistic fuzzy set theory and interval grey-numbers to MACBETH multi criteria decision making method. In this paper, a new interval grey MACBETH method approach is proposed, and the degree of greyness approach is used for clarifying the uncertainties. Using this new approach in which grey numbers are used, it is aimed to observe the changes in the importance of the alternatives. Moreover, the intuitionistic fuzzy set method is applied by considering the importance of expert opinions separately.FindingsThe proposed method is based on quantitative decision making derived from qualitative judgments. The results given under uncertain conditions are compared with the results obtained under crisp conditions of the same methods. With the qualitative levels of experts reflected in the decision process, it is clearly seen that ERP software selection problem area has more effective alternative decision solutions to the uncertain environment, and decision makers should not undervalue the unsteadiness of criteria during ERP software selection process.Originality/valueThis study contributes to the relevant literature by (1) utilizing the MACBETH method in the selection of the ERP software by optimization, and (2) validating the importance of expert opinions with uncertainties on a proper ERP software selection procedure. So, the findings of this study can help the decision-makers to evaluate the ERP selection in uncertain conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiktoria Maria Wojnarowska ◽  
Jakub Najowicz ◽  
Tomasz Piecuch ◽  
Michał Sochacki ◽  
Dawid Pijanka ◽  
...  

Purpose Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine. Design/methodology/approach The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method. Findings The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals. Research limitations/implications The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner. Originality/value No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sami Wasef Abuezhayeh ◽  
Les Ruddock ◽  
Issa Shehabat

Purpose The purpose of this paper is to investigate and explain how organizations in the construction sector can enhance their decision-making process (DMP) by practising knowledge management (KM) and business process management (BPM) activities. A conceptual framework is developed that recognises the elements that impact DMP in terms of KM and BPM. The development of this framework goes beyond current empirical work on KM in addition to BPM as it investigates a wider variety of variables that impact DMP. Design/methodology/approach A case study is undertaken in the context of the construction industry in Jordan. A theoretical framework is developed and assessment of the proposed framework was undertaken through a questionnaire survey of decision-makers in the construction sector and expert interviews. Findings The outcomes of this research provide several contributions to aid decision-makers in construction organizations. Growth in the usage of KM and BPM, in addition to the integration between them, can provide employees with task-related knowledge in the organization’s operative business processes, improve process performance, promote core competence and maximise and optimise business performance. Originality/value Through the production of a framework, this study provides a tool to enable improved decision-making. The framework generates a strong operational as well as theoretical approach to the organizational utilization of knowledge and business processes.


Sign in / Sign up

Export Citation Format

Share Document