Investigations for improving the surface finish of FDM based ABS replicas by chemical vapor smoothing process: a case study

2017 ◽  
Vol 37 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Jaspreet Singh ◽  
Rupinder Singh ◽  
Harwinder Singh

Purpose This research work aims to make an effort to investigate the effect of fused deposition modelling (FDM) process parameters on the surface finish of acrylonitrile butadiene styrene (ABS) replicas (as pre-processing stage), followed by chemical vapor smoothing (CVS) process (as a post-processing stage) as a case study. Design/methodology/approach The Taguchi L18 orthogonal array has been used for optimizing process parameters of FDM and CVS processes. Findings This study highlights that orientation and part density, and the interaction between these two have a significant effect on the surface finish at the pre-processing stage of FDM. However, after post-processing with CVS, there is hardly any influence of pre-processing FDM parameters. Originality/value The study highlights that for improving the productivity of the FDM process, the parametric optimization of process may be made on the basis of production cost and time in place of surface finish of ABS replicas. The results obtained have been verified by performing the confirmation experiments.

2020 ◽  
Vol 26 (4) ◽  
pp. 669-687 ◽  
Author(s):  
Sathies T. ◽  
Senthil P. ◽  
Anoop M.S.

Purpose Fabrication of customized products in low volume through conventional manufacturing incurs a high cost, longer processing time and huge material waste. Hence, the concept of additive manufacturing (AM) comes into existence and fused deposition modelling (FDM), is at the forefront of researches related to polymer-based additive manufacturing. The purpose of this paper is to summarize the research works carried on the applications of FDM. Design/methodology/approach In the present paper, an extensive review has been performed related to major application areas (such as a sensor, shielding, scaffolding, drug delivery devices, microfluidic devices, rapid tooling, four-dimensional printing, automotive and aerospace, prosthetics and orthosis, fashion and architecture) where FDM has been tested. Finally, a roadmap for future research work in the FDM application has been discussed. As an example for future research scope, a case study on the usage of FDM printed ABS-carbon black composite for solvent sensing is demonstrated. Findings The printability of composite filament through FDM enhanced its application range. Sensors developed using FDM incurs a low cost and produces a result comparable to those conventional techniques. EMI shielding manufactured by FDM is light and non-oxidative. Biodegradable and biocompatible scaffolds of complex shapes are possible to manufacture by FDM. Further, FDM enables the fabrication of on-demand and customized prosthetics and orthosis. Tooling time and cost involved in the manufacturing of low volume customized products are reduced by FDM based rapid tooling technique. Results of the solvent sensing case study indicate that three-dimensional printed conductive polymer composites can sense different solvents. The sensors with a lower thickness (0.6 mm) exhibit better sensitivity. Originality/value This paper outlines the capabilities of FDM and provides information to the user about the different applications possible with FDM.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sugavaneswarn M. ◽  
Prashanthi B. ◽  
John Rajan A.

Purpose This paper aims to enhance the surface finish of the fused deposition modeling (FDM) part using the vapor smoothening (VS) post-processing method and to study the combined effect of FDM and VS process parameters on the quality of the part. Design/methodology/approach Analysis of variance method is used to understand the significance of the FDM and VS process parameters. Following this, the optimized parameter for multiple criteria response is reported using the technique for order preference by similarity to ideal solution. The process parameters alternatives are build orientation angle, build surface normal and exposure time and the criteria are surface roughness and dimensional error percentage. Findings The result observed contradicts the result reported on the independent parameter optimization of FDM and VS processes. There is a radical improvement in the surface finish on account of the coating process and an increase in the exposure time results in the decrease of the surface roughness. Minimum surface roughness of 0.11 µm is observed at 1,620 build angle and the least dimensional error of 0.01% is observed at build orientation angle 540. The impact of VS on the up-facing surface is different from the down-facing surface due to the removal of support material burrs and the exposure of the surface to vapor direction. Originality/value A study on the multi-criteria decision-making to ascertain the effect of post-processing on FDM component surface normal directed both to downward (build angle 0°–90°) and to upward (build angle 99°–180°) are reported for the first time in this article. The data reported for the post-processed FDM part at the build angle 0°–180° can be used as a guideline for selecting the optimal parameter and for assigning appropriate tolerance in the CAD model.


2017 ◽  
Vol 37 (2) ◽  
pp. 154-161
Author(s):  
Rupinder Singh ◽  
Sunpreet Singh

Purpose The present research work aims to study the friction coefficient in functionally graded rapid prototyping of Al–Al2O3 composite prepared via fused deposition modelling (FDM)-assisted investment casting (IC) process. The optimized settings of the process parameters (namely, filament proportion, volume of FDM pattern, density of FDM pattern, barrel finishing (BF) time, BF media weight and number of IC slurry layers) suggested in the present research work will help fabricate parts possessing higher frictional coefficient. Design/methodology/approach Initially, melt flow index (MFI) of two different proportions of Nylon6-Al–Al2O3 (to be used as an alternative FDM filament material) was tested on the melt flow indexer and matched with MFI of commercially used acrylonitrile–butadiene–styrene filament. After this, the selected proportions of Nylon6-Al–Al2O3 were prepared in the form of the FDM filament by using a single screw extruder. Further, this FDM filament has been used for developing sacrificial IC patterns in the existing FDM system which was barely finished to improve their surface finish. Castings developed were tested for their wear resistance properties on a pin-on-disc-type tribo-tester under dry conditions at sliding conditions to check their suitability as a frictional device for industrial applications. In the methodology part, Taguchi L18 orthogonal array was used to study the effect of selected process variables on the coefficient of friction (μ). Findings It has been found that filament proportion, volume of FDM pattern and density of FDM pattern have significantly affected the μ-values. Further, density of the FDM pattern was found to have 91.62 per cent contribution in obtaining μ-values. Scanning electron micrographs highlighted uniform distribution of Al2O3 particles in the Al-matrix at suggested optimized settings. Practical implications The present methodology shows the development of a functional graded material that consisted of surface reinforcement with Al2O3 particles, which could have applications for manufacturing friction surfaces such as clutch plates, brake drum, etc. Originality/value This paper describes the effect of process parameters on wear properties of the Al–Al2O3 composite developed as a functionally graded material by the FDM-based pattern in the IC process.


2017 ◽  
Vol 23 (6) ◽  
pp. 1226-1236 ◽  
Author(s):  
Ashu Garg ◽  
Anirban Bhattacharya ◽  
Ajay Batish

Purpose The purpose of this paper is to investigate the influence of low-cost chemical vapour treatment process on geometric accuracy and surface roughness of different curved and freeform surfaces of fused deposition modelling (FDM) specimens build at different part building orientations. Design/methodology/approach Parts with different primitive and curved surfaces are designed and modelled to build at three different part orientations along X orientation (vertical position resting on side face), Y orientation (horizontal position resting on base) and Z orientation (upright position). Later, the parts are post-processed by cold vapours of acetone. Geometric accuracy and surface roughness are measured both before and after the chemical treatment to investigate the change in geometric accuracy, surface roughness of FDM parts. Findings The results indicate that surface roughness is reduced immensely after cold vapour treatment with minimum variation in geometric accuracy of parts. Parts build vertically over its side face (X orientation) provides the overall better surface finish and geometric accuracy. Originality/value The present study provides an approach of post-built treatment for FDM parts and observes a significant improvement in surface finish of the components. The present approach of post-built treatment can be adopted to enhance the surface quality as well as to achieve desired geometric accuracy for different primitive, freeform/curved surfaces of FDM samples suitable for functional components as well as prototypes.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sakthivel Murugan R. ◽  
Vinodh S.

Purpose This paper aims to optimize the process parameters of the fused deposition modelling (FDM) process using the Grey-based Taguchi method and the results to be verified based on a technique for order preference by similarity to ideal solution (TOPSIS) and analytical hierarchy process (AHP) calculation. Design/methodology/approach The optimization of process parameters is gaining a potential role to develop robust products. In this context, this paper presents the parametric optimization of the FDM process using Grey-based Taguchi, TOPSIS and AHP method. The effect of slice height (SH), part fill style (PFS) and build orientation (BO) are investigated with the response parameters machining time, surface roughness and hardness (HD). Multiple objective optimizations were performed with weights of w1 = 60%, w2 = 20% and w3 = 20%. The significance of the process parameters over response parameters is identified through analysis of variance (ANOVA). Comparisons are made in terms of rank order with respect to grey relation grade (GRG), relative closeness and AHP index values. Response table, percentage contributions of process parameters for both GRG and TOPSIS evaluation are done. Findings The optimum factor levels are identified using GRG via the Grey Taguchi method and TOPSIS via relative closeness values. The optimized factor levels are SH (0.013 in), PFS (solid) and BO (45°) using GRG and SH (0.013 in), PFS (sparse-low density) and BO (45°) using TOPSIS relative closeness value. SH has higher significance in both Grey relational analysis and TOPSIS which were analysed using ANOVA. Research limitations/implications In this research, the multiple objective optimizations were done on an automotive component using GRG, TOPSIS and AHP which showed a 27% similarity in their ranking order among the experiments. In the future, other advanced optimization techniques will be applied to further improve the similarity in ranking order. Practical implications The study presents the case of an automotive component, which illustrates practical relevance. Originality/value In several research studies, optimization was done on the standard test specimens but not on a real-time component. Here, the multiple objective optimizations were applied to a case automotive component using Grey-based Taguchi and verified with TOPSIS. Hence, an effort has been taken to find optimum process parameters on FDM, for achieving smooth, hardened automotive components with enhanced printing time. The component can be explored as a replacement for the existing product.


2019 ◽  
Vol 821 ◽  
pp. 174-180
Author(s):  
Ramil Kesvarakul ◽  
Khompee Limpadapun

Fused Deposition Modelling (FDM) has been extensively used in low-cost printers. However, the fundamental working principle (layered manufacturing) is resulted in the poor quality of the surface texture, the dimensional inaccuracy of fabricated parts, the limits its domain all issues often take place in precision industrial applications. In this paper, initially FDM based acrylonitrile butadiene styrene (ABS) model have been fabricated. In the post-processing stage, the vapor of acetone has been applied to the specimen. Then the changes in the surface finish and surface roughness have been investigated. The study highlighted that the post-processing of ABS specimen with acetone vapor treatment resulted in dramatic improvement of surface finish. Finally, parameter setting that gave the acceptable results while considering all the responses simultaneously.


2021 ◽  
Vol 27 (2) ◽  
pp. 429-451
Author(s):  
Chrysoula Pandelidi ◽  
Tobias Maconachie ◽  
Stuart Bateman ◽  
Ingomar Kelbassa ◽  
Sebastian Piegert ◽  
...  

Purpose Fused deposition modelling (FDM) is increasingly being explored as a commercial fabrication method due to its ability to produce net or near-net shape parts directly from a computer-aided design model. Other benefits of technology compared to conventional manufacturing include lower cost for short runs, reduced product lead times and rapid product design. High-performance polymers such as polyetherimide, have the potential for FDM fabrication and their high-temperature capabilities provide the potential of expanding the applications of FDM parts in automotive and aerospace industries. However, their relatively high glass transition temperature (215 °C) causes challenges during manufacturing due to the requirement of high-temperature build chambers and controlled cooling rates. The purpose of this study is to investigate the mechanical properties of ULTEM 1010, an unfilled polyetherimide grade. Design/methodology/approach In this research, mechanical properties were evaluated through tensile and flexural tests. Analysis of variance was used to determine the significance of process parameters to the mechanical properties of the specimens, their main effects and interactions. The fractured surfaces were analysed by scanning electron microscopy and optical microscopy and porosity was assessed by X-ray microcomputed tomography. Findings A range of mean tensile and flexural strengths, 60–94 MPa and 62–151 MPa, respectively, were obtained highlighting the dependence of performance on process parameters and their interactions. The specimens were found to fracture in a brittle manner. The porosity of tensile samples was measured between 0.18% and 1.09% and that of flexural samples between 0.14% and 1.24% depending on the process parameters. The percentage porosity was found to not directly correlate with mechanical performance, rather the location of those pores in the sample. Originality/value This analysis quantifies the significance of the effect of each of the examined process parameters has on the mechanical performance of FDM-fabricated specimens. Further, it provides a better understanding of the effect process parameters and their interactions have on the mechanical properties and porosity of FDM-fabricated polyetherimide specimens. Additionally, the fracture surface of the tested specimens is qualitatively assessed.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 566 ◽  
Author(s):  
Ana Valerga ◽  
Moises Batista ◽  
Severo Fernandez-Vidal ◽  
Antonio Gamez

The application of techniques to improve the surface finish of pieces obtained by fused deposition modelling, as well as other functional aspects, is of great interest nowadays. Polylactic acid, a biodegradable material, has been considered a possible substitute for petroleum-based polymers. In this work, different chemical post-processing methods are applied to polylactic acid pieces obtained by fused deposition modelling and some characteristics are studied. Structural, thermal, and crystallinity property changes are analyzed according to the treatments applied. This can prevent degradation, eliminate the glass transition phase of the material, and thereby increase the thermal resistance by about 50 °C. An improvement in the roughness of the pieces of up to 97% was also found.


Sign in / Sign up

Export Citation Format

Share Document