3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance

2017 ◽  
Vol 23 (1) ◽  
pp. 209-215 ◽  
Author(s):  
Chuncheng Yang ◽  
Xiaoyong Tian ◽  
Tengfei Liu ◽  
Yi Cao ◽  
Dichen Li

Purpose Continuous fiber reinforced thermoplastic composites (CFRTPCs) are becoming more significant in industrial applications but are limited by the high cost of molds, the manufacturing boundedness of complex constructions and the inability of special fiber alignment. The purpose of this paper is to put forward a novel three-dimensional (3D) printing process for CFRTPCs to realize the low-cost rapid fabrication of complicated composite components. Design/methodology/approach For this purpose, the mechanism of the proposed process, which consists of the thermoplastic polymer melting, the continuous fiber hot-dipping and the impregnated composites extruding, was investigated. A 3D printing equipment for CFRTPCs with a novel composite extrusion head was developed, and some composite samples have been fabricated for several mechanical tests. Moreover, the interface performance was clarified with scanning electron microscopy images. Findings The results showed that the flexural strength and the tensile strength of these 10 Wt.% continuous carbon fiber (CCF)/acrylonitrile-butadiene-styrene (ABS) specimens were improved to 127 and 147 MPa, respectively, far greater than the one of ABS parts and close to the one of CCF/ABS (injection molding) with the same fiber content. Moreover, these test results also exposed the very low interlaminar shear strength (only 2.81 MPa) and the inferior interface performance. These results were explained by the weak meso/micro/nano scale interfaces in the 3D printed composite parts. Originality/value The 3D printing process for CFRTPCs with its controlled capabilities for the orientation and distribution of fiber has great potential for manufacturing of load-bearing composite parts in the industrial circle.

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3044
Author(s):  
Yuan Yao ◽  
Meng Li ◽  
Maximilian Lackner ◽  
Lammer Herfried

Continuous fiber-reinforced manufacturing has many advantages, but the fabrication cost is high and its process is difficult to control. This paper presents a method for printing fiber-reinforced composite on the common fused filament fabrication (FFF) platform. Polylactic Acid (PLA) and Polyethylene terephthalate (PET) fibers are used as printing materials. A spatial continuous toolpath planning strategy is employed to reduce the workload of post-processing without cutting the fiber. Experimental results show that this process not only enables the printing of models with complex geometric shapes but also supports material recycling and reuse. A material recovery rate of 100% for continuous PET fiber and 83% for PLA were achieved for a better environmental impact. Mechanical tests show that the maximum tensile strength of continuous PET fiber-reinforced thermoplastic composites (PFRTPCs) is increased by 117.8% when compared to polyamide-66 (PA66).


2021 ◽  
Vol 216 ◽  
pp. 108859
Author(s):  
Dong-Jun Kwon ◽  
Neul-Sae-Rom Kim ◽  
Yeong-Jin Jang ◽  
Hyun Ho Choi ◽  
Kihyun Kim ◽  
...  

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 301
Author(s):  
Jiale Hu ◽  
Suhail Mubarak ◽  
Kunrong Li ◽  
Xu Huang ◽  
Weidong Huang ◽  
...  

Three-dimensional (3D) printing of continuous fiber-reinforced composites has been developed in recent decades as an alternative means to handle complex structures with excellent design flexibility and without mold forming. Although 3D printing has been increasingly used in the manufacturing industry, there is still room for the development of theories about how the process parameters affect microstructural properties to meet the mechanical requirements of the printed parts. In this paper, we investigated continuous carbon fiber-reinforced polyphenylene sulfide (CCF/PPS) as feedstock for fused deposition modeling (FDM) simulated by thermocompression. This study revealed that the samples manufactured using a layer-by-layer process have a high tensile strength up to 2041.29 MPa, which is improved by 68.8% compared with those prepared by the once-stacked method. Moreover, the mechanical–microstructure characterization relationships indicated that the compactness of the laminates is higher when the stacked CCF/PPS are separated, which can be explained based on both the void formation and the nanoindentation results. These reinforcements confirm the potential of remodeling the layer-up methods for the development of high-performance carbon fiber-reinforced thermoplastics. This study is of great significance to the improvement of the FDM process and opens broad prospects for the aerospace industry and continuous fiber-reinforced polymer matrix materials.


Author(s):  
Koji Kameo ◽  
Georg Bechtold ◽  
Hiroyuki Hamada ◽  
Klaus Friedrich

2019 ◽  
Vol 26 (3) ◽  
pp. 549-555
Author(s):  
Jin Young Choi ◽  
Mark Timothy Kortschot

Purpose The purpose of this study is to confirm that the stiffness of fused filament fabrication (FFF) three-dimensionally (3D) printed fiber-reinforced thermoplastic (FRP) materials can be predicted using classical laminate theory (CLT), and to subsequently use the model to demonstrate its potential to improve the mechanical properties of FFF 3D printed parts intended for load-bearing applications. Design/methodology/approach The porosity and the fiber orientation in specimens printed with carbon fiber reinforced filament were calculated from micro-computed tomography (µCT) images. The infill portion of the sample was modeled using CLT, while the perimeter contour portion was modeled with a rule of mixtures (ROM) approach. Findings The µCT scan images showed that a low porosity of 0.7 ± 0.1% was achieved, and the fibers were highly oriented in the filament extrusion direction. CLT and ROM were effective analytical models to predict the elastic modulus and Poisson’s ratio of FFF 3D printed FRP laminates. Research limitations/implications In this study, the CLT model was only used to predict the properties of flat plates. Once the in-plane properties are known, however, they can be used in a finite element analysis to predict the behavior of plate and shell structures. Practical implications By controlling the raster orientation, the mechanical properties of a FFF part can be optimized for the intended application. Originality/value Before this study, CLT had not been validated for FFF 3D printed FRPs. CLT can be used to help designers tailor the raster pattern of each layer for specific stiffness requirements.


2019 ◽  
Vol 25 (10) ◽  
pp. 1624-1636 ◽  
Author(s):  
Hongbin Li ◽  
Taiyong Wang ◽  
Sanjay Joshi ◽  
Zhiqiang Yu

Purpose Continuous fiber-reinforced thermoplastic composites are being widely used in industry, but the fundamental understanding of their properties is still limited. The purpose of this paper is to quantitatively study the effects of carbon fiber content on the tensile strength of continuous carbon fiber-reinforced polylactic acid (CCFRPLA) fabricated through additive manufacturing using the fused deposition modeling (FDM) process. Design/methodology/approach The strength of these materials is highly dependent on the interface that forms between the continuous fiber and the plastic. A cohesive zone model is proposed as a theoretical means to understand the effect of carbon fiber on the tensile strength properties of CCFRPLA. The interface formation mechanism is explored, and the single fiber pulling-out experiment is implemented to investigate the interface properties of CCFRPLA. The fracture mechanism is also explored by using the cohesive zone model. Findings The interface between carbon fiber and PLA plays the main role in transferring external load to other fibers within CCFRPLA. The proposed model established in this paper quantitatively reveals the effects of continuous carbon fiber on the mechanical properties of CCFRPLA. The experimental results using additively manufacturing CCFRPLA provide validation and explanation of the observations based on the quantitative model that is established based on the micro-interface mechanics. Research limitations/implications The predict model is established imagining that all the fibers and PLA form a perfect interface. While in a practical situation, only the peripheral carbon fibers of the carbon fiber bundle can fully infiltrate with PLA and form a transmission interface. These internal fibers that cannot contract with PLA fully, because of the limit space of the nozzle, will not form an effective interface. Originality/value This paper theoretically reveals the fracture mechanism of CCFRPLA and provides a prediction model to estimate the tensile strength of CCFRPLA with different carbon fiber contents.


2019 ◽  
Vol 25 (6) ◽  
pp. 1017-1029
Author(s):  
Javier Navarro ◽  
Matthew Din ◽  
Morgan Elizabeth Janes ◽  
Jay Swayambunathan ◽  
John P. Fisher ◽  
...  

Purpose This paper aims to study the effects of part orientation during the 3D printing process, particularly to the case of using continuous digital light processing (cDLP) technology. Design/methodology/approach The effects of print orientation on the print accuracy of microstructural features were assessed using microCT imaging and mechanical properties of cDLP microporous scaffolds were characterized under simple compression and complex biaxial loading. Resin viscosity was also quantified to incorporate this factor in the printing discussion. Findings The combined effect of print resin viscosity and the orientation and spacing of pores within the structure alters how uncrosslinked resin flows within the construct during cDLP printing. Microstructural features in horizontally printed structures exhibited greater agreement to the design dimensions than vertically printed constructs. While cDLP technologies have the potential to produce mechanically isotropic solid constructs because of bond homogeneity, the effect of print orientation on microstructural feature sizes can result in structurally anisotropic porous constructs. Originality/value This work is useful to elucidate on the specific capabilities of 3D printing cDLP technology. The orientation of the part can be used to optimize the printing process, directly altering parameters such as the supporting structures required, print time, layering, shrinkage or surface roughness. This study further detailed the effects on the mechanical properties and the print accuracy of the printed scaffolds.


Sign in / Sign up

Export Citation Format

Share Document