Effect of melt parameters on density and surface roughness in electron beam melting of gamma titanium aluminide alloy

2017 ◽  
Vol 23 (3) ◽  
pp. 474-485 ◽  
Author(s):  
Ashfaq Mohammad ◽  
Abdurahman Mushabab Al-Ahmari ◽  
Abdullah AlFaify ◽  
Muneer Khan Mohammed

Purpose Electron beam melting (EBM) is one of the potential additive manufacturing technologies to fabricate aero-engine components from gamma titanium aluminide (γ-TiAl) alloys. When a new material system has to be taken in to the fold of EBM, which is a highly complex process, it is essential to understand the effect of process parameters on the final quality of parts. This paper aims to understand the effect of melting parameters on top surface quality and density of EBM manufactured parts. This investigation would accelerate EBM process development for newer alloys. Design/methodology/approach Central composite design approach was used to design the experiments. In total, 50 specimens were built in EBM with different melt theme settings. The parameters varied were surface temperature, beam current, beam focus offset, line offset and beam speed. Density and surface roughness were selected as responses in the qualifying step of the parts. After identifying the parameters which were statistically significant, possible reasons were analyzed from the perspective of the EBM process. Findings The internal porosity and surface roughness were correlated to the process settings. Important ones among the parameters are beam focus offset, line offset and beam speed. By jointly deciding the total amount of energy input for each layer, these three parameters played a critical role in internal flaw generation and surface evolution. Research limitations/implications The range selected for each parameter is applicable, in particular, to γ-TiAl alloy. For any other alloy, the settings range has to be suitably adapted depending on physical properties such as melting point, thermal conductivity and thermal expansion co-efficient. Practical implications This paper demonstrates how melt theme parameters have to be understood in the EBM process. By adopting a similar strategy, an optimum window of settings that give best consolidation of powder and better surface characteristics can be identified whenever a new material is being investigated for EBM. This work gives researchers insights into EBM process and speeds up EBM adoption by aerospace industry to produce critical engine parts from γ-TiAl alloy. Originality/value This work is one of the first attempts to systematically carry out a number of experiments and to evaluate the effect of melt parameters for producing γ-TiAl parts by the EBM process. Its conclusions would be of value to additive manufacturing researchers working on γ-TiAl by EBM process.

Author(s):  
Fritz Klocke ◽  
Tim Herrig ◽  
Markus Zeis ◽  
Andreas Klink

Additive manufacturing technologies are becoming more and more important for the implementation of efficient process chains. Due to the possibility of a near net shape, manufacturing time for finish-machining can significantly be reduced. Especially for conventionally hard to machine materials like gamma titanium aluminides (γ-TiAl), this manufacturing process is very attractive. Nevertheless, for most applications, a rework of these generative components is necessary. Independently of the mechanical material properties, electrochemical machining is one promising technology of machining these materials. Major advantages of electrochemical machining are its process-specific characteristics of high material removal rates in combination with almost no tool wear. But electrochemical machining results are highly dependent on the microstructure of the material regarding the surface roughness. Therefore, this article deals with research on electrochemical machining of electron beam melted γ-TiAl TNB-V5 compared to a casted form of this alloy. The difference between the specific removal rates as a function of current density is investigated using electrolytes based on sodium nitrate and sodium chloride. Moreover, the dissolving behavior of the electron beam melted and casted structure is analyzed by potentiostatic polarization curves. The surface roughness is heavily dependent on a homogeneous dissolution behavior of the microstructure. Thus, the mean roughness as a function of current density is investigated as well as rim zone analyses of the different structures.


2012 ◽  
Vol 1 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Jennifer Hernandez ◽  
Lawrence E. Murr ◽  
Sara M. Gaytan ◽  
Edwin Martinez ◽  
Frank Medina ◽  
...  

2011 ◽  
pp. 455-462 ◽  
Author(s):  
Sanna Fager Franzén ◽  
Joakim Karlsson ◽  
Ryan Dehoff ◽  
Ulf Ackelid ◽  
Orlando Rios ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


Author(s):  
A. Seidel ◽  
T. Maiwald ◽  
T. Finaske ◽  
S. Polenz ◽  
S. Saha ◽  
...  

2020 ◽  
Vol 19 (01) ◽  
pp. 107-130 ◽  
Author(s):  
R. Borrelli ◽  
S. Franchitti ◽  
C. Pirozzi ◽  
L. Carrino ◽  
L. Nele ◽  
...  

Additive manufacturing (AM), applied to metal industry, is a family of processes that allows complex shape components to be realized from raw materials in the form of powders. Electron beam melting (EBM) is a relatively new additive manufacturing (AM) technology. Similar to electron-beam welding, EBM utilizes a high-energy electron beam as a moving heat source to melt metal powder, and 3D parts are produced in a layer-building fashion by rapid self-cooling. By EBM, it is possible to realize metallic complex shape components, e.g. fine network structures, internal cavities and channels, which are difficult to make by conventional manufacturing means. This feature is of particular interest in titanium industry in which numerous efforts are done to develop near net shape processes. In the field of mechanical engineering and, in particular, in the aerospace industry, it is crucial for quality certification purpose that components are produced through qualified and robust manufacturing processes ensuring high product repeatability. The contribution of the present work is to experimentally identify the EBM job parameters (sample orientation, location of the sample in the layer and height in the build chamber) that influence the dimensional accuracy and the surface roughness of the manufactured parts in Ti6Al4V. The repeatability of EBM is investigated too.


2016 ◽  
Vol 22 (3) ◽  
pp. 495-503 ◽  
Author(s):  
Rebecca Klingvall Ek ◽  
Lars-Erik Rännar ◽  
Mikael Bäckstöm ◽  
Peter Carlsson

Purpose The surface roughness of products manufactured using the additive manufacturing (AM) technology of electron beam melting (EBM) has a special characteristic. Different product applications can demand rougher or finer surface structure, so the purpose of this study is to investigate the process parameters of EBM to find out how they affect surface roughness. Design/methodology/approach EBM uses metal powder to manufacture metal parts. A design of experiment plan was used to describe the effects of the process parameters on the average surface roughness of vertical surfaces. Findings The most important electron beam setting for surface roughness, according to this study, is a combination of “speed and current” in the contours. The second most important parameter is “contour offset”. The interaction between the “number of contours” and “contour offset” also appears to be important, as it shows a much higher probability of being active than any other interaction. The results show that the “line offset” is not important when using contours. Research limitations/implications This study examined “contour offset”, “number of contours”, “speed in combination with current” and “line offset”, which are process parameters controlling the electron beam. Practical implications The surface properties could have an impact on the product’s performance. A reduction in surface processing will not only save time and money but also reduce the environmental impact. Originality/value Surface properties are important for many products. New themes containing process parameters have to be developed when introducing new materials to EBM manufacturing. During this process, it is very important to understand how the electron beam affects the melt pool.


2011 ◽  
Vol 465 ◽  
pp. 531-534 ◽  
Author(s):  
Stefano Beretta ◽  
Mauro Filippini ◽  
Luca Patriarca ◽  
Giuseppe Pasquero ◽  
Silvia Sabbadini

The fatigue properties of a Ti-48Al-2Cr-2Nb alloy obtained by electron beam melting (EBM) with a patented process has been examined by conducting high cycle fatigue tests performed at different loading ratios both at room temperature and at high temperatures, comparable to those experienced by the components during service. Some tests have been conducted in the superlong life regime well exceeding 10 million cycles, highlighting individual fatigue characteristics of the studied TiAl alloy.


Sign in / Sign up

Export Citation Format

Share Document