Machine learning using synthetic images for detecting dust emissions on construction sites

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ruoxin Xiong ◽  
Pingbo Tang

PurposeAutomated dust monitoring in workplaces helps provide timely alerts to over-exposed workers and effective mitigation measures for proactive dust control. However, the cluttered nature of construction sites poses a practical challenge to obtain enough high-quality images in the real world. The study aims to establish a framework that overcomes the challenges of lacking sufficient imagery data (“data-hungry problem”) for training computer vision algorithms to monitor construction dust.Design/methodology/approachThis study develops a synthetic image generation method that incorporates virtual environments of construction dust for producing training samples. Three state-of-the-art object detection algorithms, including Faster-RCNN, you only look once (YOLO) and single shot detection (SSD), are trained using solely synthetic images. Finally, this research provides a comparative analysis of object detection algorithms for real-world dust monitoring regarding the accuracy and computational efficiency.FindingsThis study creates a construction dust emission (CDE) dataset consisting of 3,860 synthetic dust images as the training dataset and 1,015 real-world images as the testing dataset. The YOLO-v3 model achieves the best performance with a 0.93 F1 score and 31.44 fps among all three object detection models. The experimental results indicate that training dust detection algorithms with only synthetic images can achieve acceptable performance on real-world images.Originality/valueThis study provides insights into two questions: (1) how synthetic images could help train dust detection models to overcome data-hungry problems and (2) how well state-of-the-art deep learning algorithms can detect nonrigid construction dust.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chang Liu ◽  
Samad M.E. Sepasgozar ◽  
Sara Shirowzhan ◽  
Gelareh Mohammadi

Purpose The practice of artificial intelligence (AI) is increasingly being promoted by technology developers. However, its adoption rate is still reported as low in the construction industry due to a lack of expertise and the limited reliable applications for AI technology. Hence, this paper aims to present the detailed outcome of experimentations evaluating the applicability and the performance of AI object detection algorithms for construction modular object detection. Design/methodology/approach This paper provides a thorough evaluation of two deep learning algorithms for object detection, including the faster region-based convolutional neural network (faster RCNN) and single shot multi-box detector (SSD). Two types of metrics are also presented; first, the average recall and mean average precision by image pixels; second, the recall and precision by counting. To conduct the experiments using the selected algorithms, four infrastructure and building construction sites are chosen to collect the required data, including a total of 990 images of three different but common modular objects, including modular panels, safety barricades and site fences. Findings The results of the comprehensive evaluation of the algorithms show that the performance of faster RCNN and SSD depends on the context that detection occurs. Indeed, surrounding objects and the backgrounds of the objects affect the level of accuracy obtained from the AI analysis and may particularly effect precision and recall. The analysis of loss lines shows that the loss lines for selected objects depend on both their geometry and the image background. The results on selected objects show that faster RCNN offers higher accuracy than SSD for detection of selected objects. Research limitations/implications The results show that modular object detection is crucial in construction for the achievement of the required information for project quality and safety objectives. The detection process can significantly improve monitoring object installation progress in an accurate and machine-based manner avoiding human errors. The results of this paper are limited to three construction sites, but future investigations can cover more tasks or objects from different construction sites in a fully automated manner. Originality/value This paper’s originality lies in offering new AI applications in modular construction, using a large first-hand data set collected from three construction sites. Furthermore, the paper presents the scientific evaluation results of implementing recent object detection algorithms across a set of extended metrics using the original training and validation data sets to improve the generalisability of the experimentation. This paper also provides the practitioners and scholars with a workflow on AI applications in the modular context and the first-hand referencing data.


2021 ◽  
Vol 11 (23) ◽  
pp. 11241
Author(s):  
Ling Li ◽  
Fei Xue ◽  
Dong Liang ◽  
Xiaofei Chen

Concealed objects detection in terahertz imaging is an urgent need for public security and counter-terrorism. So far, there is no public terahertz imaging dataset for the evaluation of objects detection algorithms. This paper provides a public dataset for evaluating multi-object detection algorithms in active terahertz imaging. Due to high sample similarity and poor imaging quality, object detection on this dataset is much more difficult than on those commonly used public object detection datasets in the computer vision field. Since the traditional hard example mining approach is designed based on the two-stage detector and cannot be directly applied to the one-stage detector, this paper designs an image-based Hard Example Mining (HEM) scheme based on RetinaNet. Several state-of-the-art detectors, including YOLOv3, YOLOv4, FRCN-OHEM, and RetinaNet, are evaluated on this dataset. Experimental results show that the RetinaNet achieves the best mAP and HEM further enhances the performance of the model. The parameters affecting the detection metrics of individual images are summarized and analyzed in the experiments.


2020 ◽  
Vol 34 (07) ◽  
pp. 12460-12467
Author(s):  
Liang Xie ◽  
Chao Xiang ◽  
Zhengxu Yu ◽  
Guodong Xu ◽  
Zheng Yang ◽  
...  

LIDAR point clouds and RGB-images are both extremely essential for 3D object detection. So many state-of-the-art 3D detection algorithms dedicate in fusing these two types of data effectively. However, their fusion methods based on Bird's Eye View (BEV) or voxel format are not accurate. In this paper, we propose a novel fusion approach named Point-based Attentive Cont-conv Fusion(PACF) module, which fuses multi-sensor features directly on 3D points. Except for continuous convolution, we additionally add a Point-Pooling and an Attentive Aggregation to make the fused features more expressive. Moreover, based on the PACF module, we propose a 3D multi-sensor multi-task network called Pointcloud-Image RCNN(PI-RCNN as brief), which handles the image segmentation and 3D object detection tasks. PI-RCNN employs a segmentation sub-network to extract full-resolution semantic feature maps from images and then fuses the multi-sensor features via powerful PACF module. Beneficial from the effectiveness of the PACF module and the expressive semantic features from the segmentation module, PI-RCNN can improve much in 3D object detection. We demonstrate the effectiveness of the PACF module and PI-RCNN on the KITTI 3D Detection benchmark, and our method can achieve state-of-the-art on the metric of 3D AP.


Author(s):  
Ting Tao ◽  
Decun Dong ◽  
Shize Huang ◽  
Wei Chen ◽  
Lingyu Yang

Automatic license plate recognition (ALPR) has made great progress, yet is still challenged by various factors in the real world, such as blurred or occluded plates, skewed camera angles, bad weather, and so on. Therefore, we propose a method that uses a cascade of object detection algorithms to accurately and speedily recognize plates’ contents. In our method, YOLOv3-Tiny, an end-to-end object detection network, is used to locate license plate areas, and YOLOv3 to recognize license plate characters. According to the type and position of the recognized characters, a logical judgment is made to obtain the license plate number. We applied our method to a truck weighing system and constructed a dataset called SM-ALPR, encapsulating pictures captured by this system. It is demonstrated by experiment and by comparison with two other methods applied to this dataset that our method can locate 99.51% of license plate areas in the images and recognize 99.02% of the characters on the plates while maintaining a higher running speed. Specifically, our method exhibits a better performance on challenging images that contain blurred plates, skewed angles, or accidental occlusion, or have been captured in bad weather or poor light, which implies its potential in more diversified practice scenarios.


2018 ◽  
Vol 232 ◽  
pp. 04036
Author(s):  
Jun Yin ◽  
Huadong Pan ◽  
Hui Su ◽  
Zhonggeng Liu ◽  
Zhirong Peng

We propose an object detection method that predicts the orientation bounding boxes (OBB) to estimate objects locations, scales and orientations based on YOLO (You Only Look Once), which is one of the top detection algorithms performing well both in accuracy and speed. Horizontal bounding boxes(HBB), which are not robust to orientation variances, are used in the existing object detection methods to detect targets. The proposed orientation invariant YOLO (OIYOLO) detector can effectively deal with the bird’s eye viewpoint images where the orientation angles of the objects are arbitrary. In order to estimate the rotated angle of objects, we design a new angle loss function. Therefore, the training of OIYOLO forces the network to learn the annotated orientation angle of objects, making OIYOLO orientation invariances. The proposed approach that predicts OBB can be applied in other detection frameworks. In additional, to evaluate the proposed OIYOLO detector, we create an UAV-DAHUA datasets that annotated with objects locations, scales and orientation angles accurately. Extensive experiments conducted on UAV-DAHUA and DOTA datasets demonstrate that OIYOLO achieves state-of-the-art detection performance with high efficiency comparing with the baseline YOLO algorithms.


Author(s):  
Muhammad Ahmed ◽  
Khurram Azeem Hashmi ◽  
Alain Pagani ◽  
Marcus Liwicki ◽  
Didier Stricker ◽  
...  

Recent progress in deep learning has led to accurate and efficient generic object detection networks. Training of highly reliable models depends on large datasets with highly textured and rich images. However, in real-world scenarios, the performance of the generic object detection system decreases when (i) occlusions hide the objects, (ii) objects are present in low-light images, or (iii) they are merged with background information. In this paper, we refer to all these situations as challenging environments. With the recent rapid development in generic object detection algorithms, notable progress has been observed in the field of object detection in challenging environments. However, there is no consolidated reference to cover state-of-the-art in this domain. To the best of our knowledge, this paper presents the first comprehensive overview, covering recent approaches that have tackled the problem of object detection in challenging environments. Furthermore, we present the quantitative and qualitative performance analysis of these approaches and discuss the currently available challenging datasets. Moreover, this paper investigates the performance of current state-of-the-art generic object detection algorithms by benchmarking results on the three well-known challenging datasets. Finally, we highlight several current shortcomings and outline future directions.


2022 ◽  
Vol 27 (2) ◽  
pp. 1-25
Author(s):  
Somesh Singh ◽  
Tejas Shah ◽  
Rupesh Nasre

Betweenness centrality (BC) is a popular centrality measure, based on shortest paths, used to quantify the importance of vertices in networks. It is used in a wide array of applications including social network analysis, community detection, clustering, biological network analysis, and several others. The state-of-the-art Brandes’ algorithm for computing BC has time complexities of and for unweighted and weighted graphs, respectively. Brandes’ algorithm has been successfully parallelized on multicore and manycore platforms. However, the computation of vertex BC continues to be time-consuming for large real-world graphs. Often, in practical applications, it suffices to identify the most important vertices in a network; that is, those having the highest BC values. Such applications demand only the top vertices in the network as per their BC values but do not demand their actual BC values. In such scenarios, not only is computing the BC of all the vertices unnecessary but also exact BC values need not be computed. In this work, we attempt to marry controlled approximations with parallelization to estimate the k -highest BC vertices faster, without having to compute the exact BC scores of the vertices. We present a host of techniques to determine the top- k vertices faster , with a small inaccuracy, by computing approximate BC scores of the vertices. Aiding our techniques is a novel vertex-renumbering scheme to make the graph layout more structured , which results in faster execution of parallel Brandes’ algorithm on GPU. Our experimental results, on a suite of real-world and synthetic graphs, show that our best performing technique computes the top- k vertices with an average speedup of 2.5× compared to the exact parallel Brandes’ algorithm on GPU, with an error of less than 6%. Our techniques also exhibit high precision and recall, both in excess of 94%.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2527
Author(s):  
Minji Jung ◽  
Heekyung Yang ◽  
Kyungha Min

The advancement and popularity of computer games make game scene analysis one of the most interesting research topics in the computer vision society. Among the various computer vision techniques, we employ object detection algorithms for the analysis, since they can both recognize and localize objects in a scene. However, applying the existing object detection algorithms for analyzing game scenes does not guarantee a desired performance, since the algorithms are trained using datasets collected from the real world. In order to achieve a desired performance for analyzing game scenes, we built a dataset by collecting game scenes and retrained the object detection algorithms pre-trained with the datasets from the real world. We selected five object detection algorithms, namely YOLOv3, Faster R-CNN, SSD, FPN and EfficientDet, and eight games from various game genres including first-person shooting, role-playing, sports, and driving. PascalVOC and MS COCO were employed for the pre-training of the object detection algorithms. We proved the improvement in the performance that comes from our strategy in two aspects: recognition and localization. The improvement in recognition performance was measured using mean average precision (mAP) and the improvement in localization using intersection over union (IoU).


2020 ◽  
Vol 34 (07) ◽  
pp. 12959-12966
Author(s):  
Pengyu Zhao ◽  
Ansheng You ◽  
Yuanxing Zhang ◽  
Jiaying Liu ◽  
Kaigui Bian ◽  
...  

With the advance of omnidirectional panoramic technology, 360◦ imagery has become increasingly popular in the past few years. To better understand the 360◦ content, many works resort to the 360◦ object detection and various criteria have been proposed to bound the objects and compute the intersection-over-union (IoU) between bounding boxes based on the common equirectangular projection (ERP) or perspective projection (PSP). However, the existing 360◦ criteria are either inaccurate or inefficient for real-world scenarios. In this paper, we introduce a novel spherical criteria for fast and accurate 360◦ object detection, including both spherical bounding boxes and spherical IoU (SphIoU). Based on the spherical criteria, we propose a novel two-stage 360◦ detector, i.e., Reprojection R-CNN, by combining the advantages of both ERP and PSP, yielding efficient and accurate 360◦ object detection. To validate the design of spherical criteria and Reprojection R-CNN, we construct two unbiased synthetic datasets for training and evaluation. Experimental results reveal that compared with the existing criteria, the two-stage detector with spherical criteria achieves the best mAP results under the same inference speed, demonstrating that the spherical criteria can be more suitable for 360◦ object detection. Moreover, Reprojection R-CNN outperforms the previous state-of-the-art methods by over 30% on mAP with competitive speed, which confirms the efficiency and accuracy of the design.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3111 ◽  
Author(s):  
Jing Pan ◽  
Hanqing Sun ◽  
Zhanjie Song ◽  
Jungong Han

Downsampling input images is a simple trick to speed up visual object-detection algorithms, especially on robotic vision and applied mobile vision systems. However, this trick comes with a significant decline in accuracy. In this paper, dual-resolution dual-path Convolutional Neural Networks (CNNs), named DualNets, are proposed to bump up the accuracy of those detection applications. In contrast to previous methods that simply downsample the input images, DualNets explicitly take dual inputs in different resolutions and extract complementary visual features from these using dual CNN paths. The two paths in a DualNet are a backbone path and an auxiliary path that accepts larger inputs and then rapidly downsamples them to relatively small feature maps. With the help of the carefully designed auxiliary CNN paths in DualNets, auxiliary features are extracted from the larger input with controllable computation. Auxiliary features are then fused with the backbone features using a proposed progressive residual fusion strategy to enrich feature representation.This architecture, as the feature extractor, is further integrated with the Single Shot Detector (SSD) to accomplish latency-sensitive visual object-detection tasks. We evaluate the resulting detection pipeline on Pascal VOC and MS COCO benchmarks. Results show that the proposed DualNets can raise the accuracy of those CNN detection applications that are sensitive to computation payloads.


Sign in / Sign up

Export Citation Format

Share Document