A new family of gaseous sensors utilizing catalyst-adsorptive oxide-semiconductor MIS structure

1992 ◽  
Vol 39 (11) ◽  
pp. 2650-2651 ◽  
Author(s):  
W.P. Kang ◽  
C.K. Kim
2014 ◽  
Vol 1670 ◽  
Author(s):  
Chulkyun Seok ◽  
Sujin Kim ◽  
Jaeyel Lee ◽  
Sehun Park ◽  
Yongjo Park ◽  
...  

ABSTRACTThe effect of interfacial phases on the electrical properties of Au/Ti/SiO2/InSb metal-insulator (oxide)-semiconductor (MIS or MOS) structures was investigated by capacitance-voltage (C-V) measurements. With increasing the deposition temperature of silicon oxide from 100 to 350°C using PECVD, the change in the interfacial phases between SiO2 and InSb were analyzed by resonant Raman spectroscopy to verify the relation between the breakdown of C-V characteristics and the change of interfacial phases. The shape of C-V characteristics was dramatically changed when the deposition temperature was above 300°C. The C-V measurements and Raman spectra represented that elemental Sb accumulation resulted from the chemical reaction of Sb oxide with InSb substrate was responsible for the failure in the C-V characteristics of MIS structure.


Author(s):  
N. David Theodore ◽  
Andre Vantomme ◽  
Peter Crazier

Contact is typically made to source/drain regions of metal-oxide-semiconductor field-effect transistors (MOSFETs) by use of TiSi2 or CoSi2 layers followed by AI(Cu) metal lines. A silicide layer is used to reduce contact resistance. TiSi2 or CoSi2 are chosen for the contact layer because these silicides have low resistivities (~12-15 μΩ-cm for TiSi2 in the C54 phase, and ~10-15 μΩ-cm for CoSi2). CoSi2 has other desirable properties, such as being thermally stable up to >1000°C for surface layers and >1100°C for buried layers, and having a small lattice mismatch with silicon, -1.2% at room temperature. During CoSi2 growth, Co is the diffusing species. Electrode shorts and voids which can arise if Si is the diffusing species are therefore avoided. However, problems can arise due to silicide-Si interface roughness (leading to nonuniformity in film resistance) and thermal instability of the resistance upon further high temperature annealing. These problems can be avoided if the CoSi2 can be grown epitaxially on silicon.


Author(s):  
Y. P. Lin ◽  
J. S. Xue ◽  
J. E. Greedan

A new family of high temperature superconductors based on Pb2Sr2YCu3O9−δ has recently been reported. One method of improving Tc has been to replace Y partially with Ca. Although the basic structure of this type of superconductors is known, the detailed structure is still unclear, and various space groups has been proposed. In our work, crystals of Pb2Sr2YCu3O9−δ with dimensions up to 1 × 1 × 0.25.mm and with Tc of 84 K have been grown and their superconducting properties described. The defects and crystal symmetry have been investigated using electron microscopy performed on crushed crystals supported on a holey carbon film.Electron diffraction confirmed x-ray diffraction results which showed that the crystals are primitive orthorhombic with a=0.5383, b=0.5423 and c=1.5765 nm. Convergent Beam Electron Diffraction (CBED) patterns for the and axes are shown in Figs. 1 and 2 respectively.


Author(s):  
Martin Poenie ◽  
Akwasi Minta ◽  
Charles Vorndran

The use of fura-2 as an intracellular calcium indicator is complicated by problems of rapid dye leakage and intracellular compartmentalization which is due to a probenecid sensitive anion transporter. In addition there is increasing evidence for localized microdomains of high calcium signals which may not be faithfully reported by fura-2.We have developed a new family of fura-2 analogs aimed at addressing some of these problems. These new indicators are based on a modified bapta which can be readily derivatized to produce fura-2 analogs with a variety of new properties. The modifications do not affect the chromophore and have little impact on the spectral and metal binding properties of the indicator. One of these new derivatives known as FPE3 is a zwitterionic analog of fura-2 that can be loaded into cells as an acetoxymethyl ester and whose retention in cells is much improved. The improved retention of FPE3 is important for both cuvettebased measurements of cell suspensions and for calcium imaging.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


2019 ◽  
Vol 10 (45) ◽  
pp. 6116-6121 ◽  
Author(s):  
Tan Ji ◽  
Lei Xia ◽  
Wei Zheng ◽  
Guang-Qiang Yin ◽  
Tao Yue ◽  
...  

We present a new family of porphyrin-functionalized coordination star polymers prepared through combination of coordination-driven self-assembly and post-assembly polymerization. Their self-assembly behaviour in water and potential for photodynamic therapy were demonstrated.


1985 ◽  
Vol 30 (6) ◽  
pp. 497-498
Author(s):  
Carol C. Nadelson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document