Substrate bias dependence of short-channel MOSFET threshold voltage-a novel approach

1988 ◽  
Vol 35 (2) ◽  
pp. 167-173 ◽  
Author(s):  
A. Roychaudhuri ◽  
M. Jha ◽  
S.K. Sharma ◽  
P.A. Govindacharyulu ◽  
M.J. Zarabi
1995 ◽  
Vol 38 (1) ◽  
pp. 267
Author(s):  
Sima Dimitruev ◽  
Dragan Zupac ◽  
Ninoslav Stojadinovic

1993 ◽  
Vol 36 (4) ◽  
pp. 661-664 ◽  
Author(s):  
Manoj K. Khanna ◽  
S. Haldar ◽  
Maneesha ◽  
Rachna Sood ◽  
R.S. Gupta

Author(s):  
Yuk L. Tsang ◽  
Xiang D. Wang ◽  
Reyhan Ricklefs ◽  
Jason Goertz

Abstract In this paper, we report a transistor model that has successfully led to the identification of a non visual defect. This model was based on detailed electrical characterization of a MOS NFET exhibiting a threshold voltage (Vt) of just about 40mv lower than normal. This small Vt delta was based on standard graphical extrapolation method in the usual linear Id-Vg plots. We observed, using a semilog plot, two slopes in the Id-Vg curves with Vt delta magnified significantly in the subthreshold region. The two slopes were attributed to two transistors in parallel with different Vts. We further found that one of the parallel transistors had short channel effect due to a punch-through mechanism. It was proposed and ultimately confirmed the cause was due to a dopant defect using scanning capacitance microscopy (SCM) technique.


2019 ◽  
Vol 9 (4) ◽  
pp. 504-511
Author(s):  
Sikha Mishra ◽  
Urmila Bhanja ◽  
Guru Prasad Mishra

Introduction: A new analytical model is designed for Workfunction Modulated Rectangular Recessed Channel-Silicon On Insulator (WMRRC-SOI) MOSFET that considers the concept of groove gate and implements an idea of workfunction engineering. Methods: The impact of Negative Junction Depth (NJD) and oxide thickness (tox) are analyzed on device performances such as Sub-threshold Slope (SS), Drain Induced Barrier Lowering (DIBL) and threshold voltage. Results: The results of the proposed work are evaluated with the Rectangular Recessed Channel-Silicon On Insulator (RRC-SOI) MOSFET keeping the metal workfunction constant throughout the gate region. Furthermore, an analytical model is developed using 2D Poisson’s equation and threshold voltage is estimated in terms of minimum surface potential. Conclusion: In this work, the impact of Negative Junction Depth (NJD) on minimum surface potential and the drain current are also evaluated. It is observed from the analysis that the analog switching performance of WMRRC-SOI MOSFET surpasses RRC-SOI MOSFET in terms of better driving capability, high Ion/Ioff ratio, minimized Short Channel Effects (SCEs) and hot carrier immunity. Results are simulated using 2D Sentaurus TCAD simulator for validation of the proposed structure.


1997 ◽  
Vol 41 (9) ◽  
pp. 1386-1388 ◽  
Author(s):  
Manoj K. Khanna ◽  
Maneesha ◽  
Ciby Thomas ◽  
R.S. Gupta ◽  
Subhasis Haldar

Author(s):  
Kiran Agarwal Gupta ◽  
V Venkateswarlu ◽  
Dinesh Anvekar ◽  
Sumit Basu

Sign in / Sign up

Export Citation Format

Share Document