Direct modification of conductive AFM probes by focused electron beam induced deposition

Author(s):  
Liang Cao ◽  
Ri Liu ◽  
Wenxiao Zhang ◽  
Zhankun Weng ◽  
Zhengxun Song ◽  
...  
2014 ◽  
Vol 23 (8) ◽  
pp. 088111 ◽  
Author(s):  
Jing-Yue Fang ◽  
Shi-Qiao Qin ◽  
Xue-Ao Zhang ◽  
Dong-Qing Liu ◽  
Sheng-Li Chang

2008 ◽  
Vol 14 (S2) ◽  
pp. 242-243
Author(s):  
P Kruit ◽  
W van Dorp ◽  
K Hagen ◽  
PA Crozier

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


2018 ◽  
Vol 9 ◽  
pp. 1220-1227 ◽  
Author(s):  
Caspar Haverkamp ◽  
George Sarau ◽  
Mikhail N Polyakov ◽  
Ivo Utke ◽  
Marcos V Puydinger dos Santos ◽  
...  

A fluorine free copper precursor, Cu(tbaoac)2 with the chemical sum formula CuC16O6H26 is introduced for focused electron beam induced deposition (FEBID). FEBID with 15 keV and 7 nA results in deposits with an atomic composition of Cu:O:C of approximately 1:1:2. Transmission electron microscopy proved that pure copper nanocrystals with sizes of up to around 15 nm were dispersed inside the carbonaceous matrix. Raman investigations revealed a high degree of amorphization of the carbonaceous matrix and showed hints for partial copper oxidation taking place selectively on the surfaces of the deposits. Optical transmission/reflection measurements of deposited pads showed a dielectric behavior of the material in the optical spectral range. The general behavior of the permittivity could be described by applying the Maxwell–Garnett mixing model to amorphous carbon and copper. The dielectric function measured from deposited pads was used to simulate the optical response of tip arrays fabricated out of the same precursor and showed good agreement with measurements. This paves the way for future plasmonic applications with copper-FEBID.


2015 ◽  
Vol 26 (47) ◽  
pp. 475701 ◽  
Author(s):  
F Porrati ◽  
M Pohlit ◽  
J Müller ◽  
S Barth ◽  
F Biegger ◽  
...  

2015 ◽  
Vol 6 ◽  
pp. 1260-1267 ◽  
Author(s):  
Francesc Salvat-Pujol ◽  
Roser Valentí ◽  
Wolfgang S Werner

The aim of the present overview article is to raise awareness of an essential aspect that is usually not accounted for in the modelling of electron transport for focused-electron-beam-induced deposition (FEBID) of nanostructures: Surface excitations are on the one hand responsible for a sizeable fraction of the intensity in reflection-electron-energy-loss spectra for primary electron energies of up to a few kiloelectronvolts and, on the other hand, they play a key role in the emission of secondary electrons from solids, regardless of the primary energy. In this overview work we present a general perspective of recent works on the subject of surface excitations and on low-energy electron transport, highlighting the most relevant aspects for the modelling of electron transport in FEBID simulations.


2011 ◽  
Vol 45 (3) ◽  
pp. 035001 ◽  
Author(s):  
R Córdoba ◽  
R Lavrijsen ◽  
A Fernández-Pacheco ◽  
M R Ibarra ◽  
F Schoenaker ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document