Voltage-mode multifunction filter with single input and three outputs using two compound current conveyors

Author(s):  
Chun-Ming Chang ◽  
Ming-Jye Lee
1996 ◽  
Vol 19 (3) ◽  
pp. 133-138 ◽  
Author(s):  
Muhammad Taher Abuelma'atti ◽  
Azhar Quddus

A new voltage-mode active-filter with single input and three outputs is presented. The parameters of the proposed filter are programmable and the filter uses grounded capacitors. The proposed circuit can simultaneously realize lowpass, highpass, and bandpass biquadratic filter functions and enjoys low temperature sensitivities.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Hua-Pin Chen

This paper introduces a novel voltage-mode multifunction biquadratic filter with single input and four outputs using two plus-type differential difference current conveyors (DDCCs) and four grounded passive components. The filter can realize inverting highpass, inverting bandpass, noninverting lowpass, and noninverting bandpass filter responses, simultaneously. It still maintains the following advantages: (i) using grounded capacitors attractive for integration and absorbing shunt parasitic capacitance, (ii) using grounded resistors at allXterminals of DDCCs suitable for the variations of filter parameters and absorbing series parasitic resistances at allXterminals of DDCCs, (iii) high-input impedance good for cascadability, (iv) no need to change the filter topology, (v) no need to component-matching conditions, (vi) low active and passive sensitivity performances, and (vii) simpler configuration due to the use of plus-type DDCCs only. HSPICE and MATLAB simulations results are provided to demonstrate the theoretical analysis.


2008 ◽  
Vol 17 (06) ◽  
pp. 1161-1172 ◽  
Author(s):  
HUA-PIN CHEN ◽  
KUO-HSIUNG WU

A new voltage-mode biquad with four inputs and four outputs using only two differential difference current conveyors (DDCCs), two grounded capacitors, and two resistors is proposed. The proposed circuit can act as a multifunction voltage-mode filter with one or three inputs and four outputs and can perform simultaneous realization of voltage-mode notch, highpass, bandpass, and lowpass filter signals from the four output terminals, respectively, without any component choice conditions. On the other hand, it also can act as a universal voltage-mode filter with four inputs and a single output and can realize five generic voltage-mode filter signals from the same configuration without any component-matching conditions. Finally, to verify our architecture, we have designed this analog filter chip with TSMC 0.35 μm 2P4M CMOS technology. This chip operates to 1.125 MHz and consumes 30.95 mW. The chip area of the analog filter is about 0.822 mm2.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jitendra Mohan ◽  
Bhartendu Chaturvedi ◽  
Sudhanshu Maheshwari

The paper presents a new voltage-mode multifunction filter. The proposed filter employs single modified fully differential second generation current conveyor (FDCCII), two grounded capacitors, and three resistors. The proposed circuit enjoys the employment of two grounded capacitors (attractive for absorbing shunt parasitic capacitance and ideal for IC implementation). The proposed circuit provides all five generic filter responses (low pass (LP), high pass (HP), band pass (BP), notch (NH), and all pass (AP) filter responses) simultaneously with single input. The novel proposed filter has low active and passive sensitivities. A number of time domain and frequency domain simulation results depicted through PSPICE using 0.18 µm TSMC process parameters are included to validate the theory. The proposed circuit is expected to enhance the existing knowledge on the subject.


2011 ◽  
Vol 20 (04) ◽  
pp. 681-696 ◽  
Author(s):  
HUA-PIN CHEN

A novel versatile three-input five-output universal voltage-mode filter employing two differential difference current conveyors, two grounded capacitors and three resistors is proposed. The proposed configuration can be used as either a single-input five-output or three-input two-output. Unlike the previously reported works, it can simultaneously realize five different generic signals: low-pass, band-pass, high-pass, notch and all-pass. Moreover, the proposed circuit still offers the following advantages: (i) the employment of two grounded capacitors, (ii) no need to employ inverting-type input signals, (iii) no need to impose component choice, (iv) orthogonal control of the resonance angular frequency ωo and the quality factor Q and (v) low active and passive sensitivity performances.


2007 ◽  
Vol 16 (01) ◽  
pp. 93-104 ◽  
Author(s):  
HUA-PIN CHEN ◽  
KUO-HSIUNG WU

Two new voltage-mode multifunction biquadratic filter configurations were proposed. The first proposed high-input impedance multifunction filter with single input and four outputs, which can simultaneously realize voltage-mode low-pass, band-pass, and high-pass filter responses employing all grounded passive components. The second proposed configuration is a slight modification of the first proposed circuit. It leads two more notch and all-pass transfer functions than the first proposed circuit. Moreover, both the proposed circuits still offer the following advantages: (i) orthogonal control of ωo and Q, (ii) low active and passive sensitivity performances, (iii) simpler configuration due to the use of noninverting type differential difference current conveyors (DDCCs) only.


Author(s):  
Rajeshwari Pandey ◽  
Neeta Pandey ◽  
Sajal Kumar Paul ◽  
Ajay Singh ◽  
Balamurali Sriram ◽  
...  

Author(s):  
Pintira Huaihongthong ◽  
Amornchai Chaichana ◽  
Peerawut Suwanjan ◽  
Surapong Siripongdee ◽  
Wisuit Sunthonkanokpong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document