Linearity enhancement of multibit ΔΣ A/D and D/A converters using data weighted averaging

Author(s):  
R.T. Baird ◽  
T.S. Fiez
2015 ◽  
Vol 643 ◽  
pp. 101-108 ◽  
Author(s):  
Shaiful Nizam Mohyar ◽  
Masahiro Murakami ◽  
Atsushi Motozawa ◽  
Haruo Kobayashi ◽  
Osamu Kobayashi ◽  
...  

This paper presents algorithms for improving spurious-free dynamic range (SFDR) of current-steering digital-to-analog converters (DACs) — targeted at communication applications — by minimizing both current-source mismatches and glitches. Conventional segmented current-steering DACs suffer from static mismatches among current sources which cause nonlinearity and degrade SFDR, though glitch energy is relatively small. The data-weighted averaging (DWA) algorithm can reduce static current source mismatch effects, but it increases the effects of glitch energy. Here we investigate the use of both conventional Switching-Sequence Post-Adjustment (SSPA) calibration and One–Element-Shifting (OES) methods in order to reduce the effects of both nonlinearity and glitch energy. For further improvement, we propose and investigate a fully-digital combined algorithm to reduce static current source mismatch effects with minimal increase in the glitch energy. We also did simulations of the effect of combining these two compensation methods. Our MATLAB simulations show that the combined algorithm can improve SFDR performance by 24 dB, 22dB and 2dB compared to conventional thermometer-coded, one-element-shifting and SSPA methods respectively in some conditions. When we take current mismatch into account, the combined algorithm causes glitch energy to increase by only 0.02 to 0.2 % compared to the other three methods alone.


Author(s):  
Ali Kerem Nahar ◽  
Ansam Subhi Jaddar ◽  
Hussain K. Khleaf ◽  
Mohmmed Jawad Mortada Mobarek

<p>In general, the noise shaping responses, a cyclic second order response is delivered by the method of data weighted averaging (DWA) in which the output of the digital-to-analog convertor (DAC) is restricted to one of two states. DWA works efficiently for rather low levels of quantizing; it begins presenting considerable difficulties when internal levels of quantizing are extended further. Though, each added bit of internal quantizing causes an exponentially increasing in power dissipation, complexity and size of the DWA logic and the DAC. This gives a controlled seconnd order response accounting for the mismatch of the elements of DAC. The multi-bit DAC is made up of numerous single-bit DACs having values thereof chosen via a digital encoder. This research presents a discussion of the influence of mismatching between unit elements of the Delta-Sigma DAC. This results in a constrained second order response accounting for mismatch of DAC elements. The results of the simulation showed how the effectiveness of DWA method is in reducing band tones. Furthermore, DWA method has proved its efficiency in solving the mismatching of DAC unit elements. The noise of the mismatching elements is enhanced 11 dB at 0.01 with the proposed DWA, thereby enhancing the efficiency of the DAC in comparison to the efficiency of the DAC with no use of the circuit of DWA</p>


JAMIA Open ◽  
2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Anthony Finch ◽  
Alexander Crowell ◽  
Yung-Chieh Chang ◽  
Pooja Parameshwarappa ◽  
Jose Martinez ◽  
...  

Abstract Objective Attention networks learn an intelligent weighted averaging mechanism over a series of entities, providing increases to both performance and interpretability. In this article, we propose a novel time-aware transformer-based network and compare it to another leading model with similar characteristics. We also decompose model performance along several critical axes and examine which features contribute most to our model’s performance. Materials and methods Using data sets representing patient records obtained between 2017 and 2019 by the Kaiser Permanente Mid-Atlantic States medical system, we construct four attentional models with varying levels of complexity on two targets (patient mortality and hospitalization). We examine how incorporating transfer learning and demographic features contribute to model success. We also test the performance of a model proposed in recent medical modeling literature. We compare these models with out-of-sample data using the area under the receiver-operator characteristic (AUROC) curve and average precision as measures of performance. We also analyze the attentional weights assigned by these models to patient diagnoses. Results We found that our model significantly outperformed the alternative on a mortality prediction task (91.96% AUROC against 73.82% AUROC). Our model also outperformed on the hospitalization task, although the models were significantly more competitive in that space (82.41% AUROC against 80.33% AUROC). Furthermore, we found that demographic features and transfer learning features which are frequently omitted from new models proposed in the EMR modeling space contributed significantly to the success of our model. Discussion We proposed an original construction of deep learning electronic medical record models which achieved very strong performance. We found that our unique model construction outperformed on several tasks in comparison to a leading literature alternative, even when input data was held constant between them. We obtained further improvements by incorporating several methods that are frequently overlooked in new model proposals, suggesting that it will be useful to explore these options further in the future.


2020 ◽  
Vol 105 ◽  
pp. 104905
Author(s):  
Qihui Zhang ◽  
Jing Li ◽  
Ning Ning ◽  
Qi Yu ◽  
Kejun Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document