Comments on "A new and simple algorithm for sliding mode trajectory control of robot arm" by Y.F. Chen, et al

1992 ◽  
Vol 37 (7) ◽  
pp. 1088 ◽  
Author(s):  
P. Myszkorowski
1989 ◽  
Vol 7 (6) ◽  
pp. 706-711 ◽  
Author(s):  
Yi-Seng CHEN ◽  
Hiroyuki IKEDA ◽  
Tsutomu MITA ◽  
Shinji WAKUI

1990 ◽  
Vol 5 (4) ◽  
pp. 385-395
Author(s):  
Yi-Feng Chen ◽  
Hiroyuki Ikeda ◽  
Tsutomu Mita ◽  
Shiji Wakui

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 831
Author(s):  
Izzat Al-Darraji ◽  
Dimitrios Piromalis ◽  
Ayad A. Kakei ◽  
Fazal Qudus Khan ◽  
Milos Stojemnovic ◽  
...  

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d'Alembert principle. Secondly, an adaptive robust controller, based on a sliding mode, is designed to manipulate the problem of uncertainties, including modeling errors. Last, a higher stability controller, based on the RBF neural network, is implemented with the adaptive robust controller to stabilize the ARAs, avoiding modeling errors and unknown payload issues. The novelty of the proposed design is that it takes into account high nonlinearities, coupling control loops, high modeling errors, and disturbances due to payloads and environmental conditions. The model was evaluated by the simulation of a case study that includes the two proposed controllers and ARA trajectory tracking. The simulation results show the validation and notability of the presented control algorithm.


Author(s):  
Trong-Thang Nguyen

In this research, the author presents the model of the two-link robot arm and its dynamic equations. Based on these dynamic equations, the author builds the sliding mode controller for each joint of the robot. The tasks of the controllers are controlling the Torque in each Joint of the robot in order that the angle coordinates of each link coincide with the desired values. The proposed algorithm and robot model are built on Matlab-Simulink to investigate the system quality. The results show that the quality of the control system is very high: the response angles of each link quickly reach the desired values, and the static error equal to zero.


Author(s):  
Lörinc Márton ◽  
◽  
Béla Lantos ◽  

The paper deals with robust motion control of robotic systems with unknown friction parameters and payload mass. The parameters of the robot arm were considered known with a given precision. To solve the control of the robot with unknown payload mass and friction parameters, sliding mode control algorithm was proposed combined with robust parameter adaptation techniques. Using Lyapunov method it was shown that the resulting controller achieves a guaranteed final tracking accuracy. Simulation results are presented to illustrate the effectiveness and achievable control performance of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document