scholarly journals Reconfigurable Multiband Operation for Wireless Devices Embedding Antenna Boosters

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 808
Author(s):  
Jaume Anguera ◽  
Aurora Andújar ◽  
José Luis Leiva ◽  
Oriol Massó ◽  
Joakim Tonnesen ◽  
...  

Wireless devices such as smart meters, trackers, and sensors need connections at multiple frequency bands with low power consumption, thus requiring multiband and efficient antenna systems. At the same time, antennas should be small to easily fit in the scarce space existing in wireless devices. Small, multiband, and efficient operation is addressed here with non-resonant antenna elements, featuring volumes less than 90 mm3 for operating at 698–960 MHz as well as some bands in a higher frequency range of 1710–2690 MHz. These antenna elements are called antenna boosters, since they excite currents on the ground plane of the wireless device and do not rely on shaping complex geometric shapes to obtain multiband behavior, but rather the design of a multiband matching network. This design approach results in a simpler, easier, and faster method than creating a new antenna for every device. Since multiband operation is achieved through a matching network, frequency bands can be configured and optimized with a reconfigurable matching network. Two kinds of reconfigurable multiband architectures with antenna boosters are presented. The first one includes a digitally tunable capacitor, and the second one includes radiofrequency switches. The results show that antenna boosters with reconfigurable architectures feature multiband behavior with very small sizes, compared with other prior-art techniques.

2018 ◽  
Vol 7 (2) ◽  
pp. 68-75 ◽  
Author(s):  
P. N. Vummadisetty ◽  
A. Kumar

This research article presents, a compact 0.19 λ x 0.32 λ size ACS fed printed monopole wideband antenna loaded with multiple radiating branches suitable for LTE2300/WiBro, 5 GHz WLAN and WiMAX applications. The proposed triple band uniplanar antenna encompasses of C shaped strip, L shaped strip, rectangular shaped strip and a lateral ground plane. All the radiating strips and ground plane are etched on the 26 × 15 m size low cost FR4 epoxy substrate. This designed geometry evoked three independent reonances at 2.3 GHz, 3.5 GHz and 5.5 GHz with precise impedance matching over each operating band. The reflection coefficient ( ) response of the presented antenna demonstrates three distinct resonant modes associated with -10 dB bandwidths are about 2.24-2.40 GHz, 3.38-3.83 GHz and 5.0-6.25 GHz respectively. From the study, it is also observed that the proposed design works perfect with microstrip as well as CPW feedings. Hence the designed Multi Feed Multi Band (MFMB) antenna can be easily deployed in to any portable wireless device that works for 2.3/3.5/ 5 GHz frequency bands.


2013 ◽  
Vol 303-306 ◽  
pp. 1838-1841
Author(s):  
Zhang Fa Liu ◽  
Jing Wang

A Novel CMOS reconfigurable mixer for dual-mode GNSS receiver is proposed in this paper, this mixer consists of a Gilbert mixer with a reconfigurable matching network, it can be used for both USA GPS and China Beidou receiver systems, simulation results shown the configurable mixer has a voltage conversion gain 20.5dB in the interested frequency bands, the S11 parameter is around -18dB at both GPS and Beidou frequency bands, the circuit draws 7.3mA current from 1.8V power supply.


Author(s):  
Pham Trung Minh ◽  
Nguyen Trong Duc ◽  
Phan Xuan Vu ◽  
Nguyen Thanh Chuyen ◽  
Vu Van Yem

In this paper, we design and implement a low profile frequency reconfigurable Planar Inverted-F Antenna (PIFA) for WLAN, m-WiMAX and UMTS applications. Dierent from several conventional designs, the air layer in our antenna is removed, while the radiator patches and ground plane are printed on two sides of the same substrate. This makes the antenna structure thin and lightweight. The defected ground structure (DGS) and coplanar sorting-trips are also designed for adjusting lower operating frequencies without increasing the antenna’s size. Three PIN-diodes are used in appropriate positions for accurate switches between frequency bands. Moreover, the three radiator patches’ parameters are optimally selected on all configurations using Genetic Algorithm (GA). Simulation results show that depending on the ON/OFF states of the PIN-diodes, the antenna can operate in three applicable frequency bands, i.e., 2.1 GHz, 2.4 GHz, and 3.5 GHz with the corresponding peak gains of 0.48 dBi, 3.55 dBi, and 4.33 dBi. The antenna occupies an overall size of 63.5x33.5x1.6 mm3, which can be easily fabricated and integrated into small wireless devices. Simulated and measured results are also compared to validate the correctness the antenna design.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jesus De Mingo ◽  
Pedro Luis Carro ◽  
Paloma Garcia-Ducar ◽  
Antonio Valdovinos

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 12206-12212 ◽  
Author(s):  
Emanuele Andrea Casu ◽  
Andrei A. Muller ◽  
Montserrat Fernandez-Bolanos ◽  
Alessandro Fumarola ◽  
Anna Krammer ◽  
...  

Author(s):  
Richi Nayak ◽  
Anurag Nayak

Research and practices in electronic businesses over wireless devices have recently seen an exponential growth. This chapter presents the basic concepts necessary to understand m-business applications and a case study of the voice driven airline-ticketing system that can be accessed at any time, anywhere by mobile phones. This application offers maximum functionality while still maintaining a high level of user convenience in terms of input and navigation.


2011 ◽  
pp. 26-50 ◽  
Author(s):  
Peter Tarasewich

Well-designed and usable interfaces for mobile commerce applications are critical. But given the uniqueness of the wireless environment, usability becomes even harder to ensure. This chapter describes the benefits and limitations of various wireless device interface technologies. It provides guidance on determining the usability of wireless devices, emphasizing the fact that context will factor heavily into the use of mobile applications. Some of the additional challenges that developers face when designing applications for wireless devices, such as infrastructure and software issues, are also discussed.


Author(s):  
Mary R. Lind

In this article, wireless technology use is addressed with a focus on the factors that underlie wireless interaction. A de-construction of the information processing theories of user/technology interaction is presented. While commercial and useful applications of wireless devices are numerous, wireless interaction is emerging as a means of social interaction—an extension of the user’s personal image—and as an object of amusement and play. The technology/user interaction theories that have driven the discussions of computer assisted communication media are information richness, communicative action, and social influence modeling. This article will extend this theoretical view of wireless devices by using flow theory to address elements of fun, control, and focus. Then, these technology/user interaction theories are used with respect to wireless devices to propose areas for future research.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Haider Ali ◽  
Anwar Ali ◽  
M. Rizwan Mughal ◽  
Leonardo Reyneri ◽  
Claudio Sansoe ◽  
...  

In recent years, the development market for low-cost nanosatellites has grown considerably. It has been made possible due to the availability of low-cost launch vectors and the use of “commercial off-the-shelf components” (COTS). The satellite design standardization has also helped a great deal to encourage subsystem reuse over a number of space missions. This has created numerous opportunities for small companies and universities to develop their own nanosatellite or satellite subsystems. Most COTS components are usually not space qualified. In order to make them work and withstand the harsh space environment, they need extra effort in circuit redesign and implementation. Also, by adopting the modularity concept and the design reuse method, the overall testing and nonrecurring development cost can be significantly reduced. This can also help minimize the subsystem testing times. The RF front-end design presented in this paper is also considered one of the better and feasible choices based on the above approach. It consists of an S-band transceiver that is fully implemented using COTS components. In the transmit chain, it is comprised of the transmitting CC2510 RF matching network and a power amplifier (PA) with an RF output power of up to 33 dBm which connects to an antenna using two RF switches. The receive chain starts from the antenna that is connected through two RF switches to the low-noise amplifier (LNA) that further connects to the receiving CC2510 via the RF matching network. The receiver sensitivity is -100 dBm. This is a half-duplex system using the same antenna for transmitting and receiving. The receiver and transmitter chains are isolated together using two RF switches which together provide an isolation of up to 90 dB at 2.4 GHz. The concept behind using two RF switches is to provide better isolation from the transmit chain to the LNA. The matching network of CC2510 has been designed in a symmetric fashion to avoid any delays. All the RF COTS used have been selected according to link budget requirements. The LNA, PA, and RF switches were tested individually for compliance. The passive components used in the overall design of the matching network are chosen on the basis of minimum dimension, least parasitic behaviour, and guaranteed optimum RF matching. Also, the RF COTS used are non-CMOS which makes them more robust against space radiations associated with the LEO environment and enables them to provide a radio communication data rate of up to 500 kbps in both uplink and downlink. The vacant spaces on the implemented PCB are shielded with a partial ground plane to avoid RF interference.


2012 ◽  
Vol 1 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Olegs Tetervenoks ◽  
Ilya Galkin ◽  
Jelena Armas

Abstract Usually wireless devices require autonomous power supply. They are equipped with radio frequency transceiver modules with relatively high energy consumption especially in data transmission mode. This also means that autonomous power supply of wireless device requires relatively large energy storage. Rechargeable battery in this case is a good solution, but the charging process of a battery takes a long time. In this paper the use of supercapacitor as energy storage for autonomous power supply of wireless node is further elaborated on the example of light sensor for illumination measurement test bench.


Sign in / Sign up

Export Citation Format

Share Document