scholarly journals Sliding Mode Observe and Control for the Underactuated Inertia Wheel Pendulum System

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 86394-86402 ◽  
Author(s):  
Weiping Guo ◽  
Diantong Liu
Author(s):  
Bin Zhao ◽  
Zhenxin Feng ◽  
Jianguo Guo

The problem of the integrated guidance and control (IGC) design for strap-down missile with the field-of-view (FOV) constraint is solved by using the integral barrier Lyapunov function (iBLF) and the sliding mode control theory. Firstly, the nonlinear and uncertainty state equation with non-strict feedback form for IGC design is derived by using the strap-down decoupling strategy. Secondly, a novel adaptive finite time disturbance observer is proposed to estimate the uncertainties based on an improved adaptive gain super twisting algorithm. Thirdly, the special time-varying sliding variable is designed and the iBLF is employed to handle the problem of FOV constraint. Theoretical derivation and simulation show that the IGC system is globally uniformly ultimately bounded and the FOV angle constraint is also guaranteed not only during the reaching phase but also during the sliding mode phase.


2012 ◽  
Vol 349 (2) ◽  
pp. 493-509 ◽  
Author(s):  
Zhang Zexu ◽  
Wang Weidong ◽  
Li Litao ◽  
Huang Xiangyu ◽  
Cui Hutao ◽  
...  

Author(s):  
JEN-YANG CHEN

In this paper, a fuzzy sliding mode controller (FSMC), which is synthesized by a collection of linguistic control rules whose membership functions of THEN-part is adapted, is proposed. Both the membership functions of IF-part and THEN-part are arranged symmetrically and distributed equally in the individual universe of discourse. In particular, the membership functions of the THEN-part can be adapted via one parameter adaptation to meet the required system specification. The proposed direct adaptive FSMC can be synthesized through the following stages. First, the control rules are constructed according to the concepts of SMC, and the fuzzy sets whose membership functions are symmetrically covered in state space. Then, the derived adaptive law is used to adjust the membership functions of the THEN-part. The FSMC is employed to approximate the equivalent control of SMC without knowing the mathematical model of the controlled system. Third, a hitting control is developed to guarantee the stability of the control system. Finally, we apply this FSMC to control a nonlinear inverted pendulum system for confirming the validity of the proposed approach.


Author(s):  
Hui Li ◽  
Linxuan Zhang ◽  
Tianyuan Xiao ◽  
Jietao Dong

This paper introduces a CPS application for intelligent aeroplane assembly. At first, the CPS structure is presented, which acquires the characteristics of general CPS and enables "simulation-based planning and control" to achieve high level intelligent assembly. Then the paper puts forward data fusion estimation algorithm under synchronous and asynchronous sampling, respectively. The experiment shows that global optimal distributed fusion estimation under synchronized sampling proves to be closer to the actual value compared with ordinary weighted estimation, and multi-scale distributed fusion estimation algorithm of wavelet under asynchronous sampling does not need time registration, it can also directly link to data, and the error is smaller. This paper presents hybrid control strategy under the circumstance of joint action of the inner and outer loop to address the problems caused by the less controllable feature of the parallel mechanism when undertaking online process simulation and control. A robust adaptive sliding mode controller is designed based on disturbance observer to restrain inner interference and maintain robustness. At the same time, an outer collaborative trajectory planning is also designed. All the experiment results show the feasibility of above proposed methods.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


Sign in / Sign up

Export Citation Format

Share Document