scholarly journals Multiview Low-Rank Hybrid Dilated Network for SAR Target Recognition Using Limited Training Samples

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 227847-227856
Author(s):  
Zhaohui Xue ◽  
Mengxue Zhang
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jingyu Li ◽  
Cungen Liu

For the problem of reliable decision in synthetic aperture radar (SAR) target recognition, a method based on updated classifiers is proposed. The convolutional neural network (CNN) and support vector machine (SVM) are used as basic classifiers to classify samples with unknown target labels. The two decisions are fused and the reliability of the fused decision is evaluated. The classified test samples with high reliabilities are added to the original training samples to update the classifiers. The updated classifiers have stronger classification abilities and the fused result of the two classifiers can obtain a more reliable decision. The proposed method is tested and verified based on the moving and stationary target acquisition and recognition (MSTAR) dataset. The experimental results verify the effectiveness and robustness of the proposed method.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4333
Author(s):  
Pengfei Zhao ◽  
Lijia Huang ◽  
Yu Xin ◽  
Jiayi Guo ◽  
Zongxu Pan

At present, synthetic aperture radar (SAR) automatic target recognition (ATR) has been deeply researched and widely used in military and civilian fields. SAR images are very sensitive to the azimuth aspect of the imaging geomety; the same target at different aspects differs greatly. Thus, the multi-aspect SAR image sequence contains more information for classification and recognition, which requires the reliable and robust multi-aspect target recognition method. Nowadays, SAR target recognition methods are mostly based on deep learning. However, the SAR dataset is usually expensive to obtain, especially for a certain target. It is difficult to obtain enough samples for deep learning model training. This paper proposes a multi-aspect SAR target recognition method based on a prototypical network. Furthermore, methods such as multi-task learning and multi-level feature fusion are also introduced to enhance the recognition accuracy under the case of a small number of training samples. The experiments by using the MSTAR dataset have proven that the recognition accuracy of our method can be close to the accruacy level by all samples and our method can be applied to other feather extraction models to deal with small sample learning problems.


2019 ◽  
Vol 11 (22) ◽  
pp. 2676 ◽  
Author(s):  
Meiting Yu ◽  
Sinong Quan ◽  
Gangyao Kuang ◽  
Shaojie Ni

Synthetic aperture radar (SAR) target recognition under extended operating conditions (EOCs) is a challenging problem due to the complex application environment, especially for insufficient target variations and corrupted SAR images in the training samples. This paper proposes a new strategy to solve these problems for target recognition. The SAR images are firstly characterized by multi-scale components of monogenic signal. The generated monogenic features are decomposed to learn a class dictionary and a shared dictionary, which represent the possible intraclass variations information and the common information, respectively. Moreover, a sparse representation of the class dictionary and a dense representation of the shared dictionary are jointly employed to represent a query sample for classification. The validity of the proposed strategy is demonstrated with multiple comparative experiments on moving and stationary target acquisition and recognition (MSTAR) database.


2021 ◽  
Vol 183 ◽  
pp. 108030
Author(s):  
Yukun Zhang ◽  
Xiansheng Guo ◽  
Haohao Ren ◽  
Lin Li

Sign in / Sign up

Export Citation Format

Share Document