Effect of rocket firing pattern on launching platform for vibration minimization

Author(s):  
Attapon Charoenpon ◽  
Sedthawatt Sucharitpwatskul
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ditte Olsen ◽  
Niels Wellner ◽  
Mathias Kaas ◽  
Inge E. M. de Jong ◽  
Florence Sotty ◽  
...  

AbstractAttention deficit hyperactivity disorder (ADHD) is the most frequently diagnosed neurodevelopmental disorder worldwide. Affected individuals present with hyperactivity, inattention, and cognitive deficits and display a characteristic paradoxical response to drugs affecting the dopaminergic system. However, the underlying pathophysiology of ADHD and how this relates to dopaminergic transmission remains to be fully understood. Sorcs2−/− mice uniquely recapitulate symptoms reminiscent of ADHD in humans. Here, we show that lack of SorCS2 in mice results in lower sucrose intake, indicating general reward deficits. Using in-vivo recordings, we further find that dopaminergic transmission in the ventral tegmental area (VTA) is shifted towards a more regular firing pattern with marked reductions in the relative occurrence of irregular firing in Sorcs2−/− mice. This was paralleled by abnormal acute behavioral responses to dopamine receptor agonists, suggesting fundamental differences in dopaminergic circuits and indicating a perturbation in the balance between the activities of the postsynaptic dopamine receptor DRD1 and the presynaptic inhibitory autoreceptor DRD2. Interestingly, the hyperactivity and drug response of Sorcs2−/− mice were markedly affected by novelty. Taken together, our findings show how loss of a candidate ADHD-risk gene has marked effects on dopaminergic circuit function and the behavioral response to the environment.


2014 ◽  
Vol 111 (10) ◽  
pp. 1949-1959 ◽  
Author(s):  
Alan D. Dorval ◽  
Warren M. Grill

Pathophysiological activity of basal ganglia neurons accompanies the motor symptoms of Parkinson's disease. High-frequency (>90 Hz) deep brain stimulation (DBS) reduces parkinsonian symptoms, but the mechanisms remain unclear. We hypothesize that parkinsonism-associated electrophysiological changes constitute an increase in neuronal firing pattern disorder and a concomitant decrease in information transmission through the ventral basal ganglia, and that effective DBS alleviates symptoms by decreasing neuronal disorder while simultaneously increasing information transfer through the same regions. We tested these hypotheses in the freely behaving, 6-hydroxydopamine-lesioned rat model of hemiparkinsonism. Following the onset of parkinsonism, mean neuronal firing rates were unchanged, despite a significant increase in firing pattern disorder (i.e., neuronal entropy), in both the globus pallidus and substantia nigra pars reticulata. This increase in neuronal entropy was reversed by symptom-alleviating DBS. Whereas increases in signal entropy are most commonly indicative of similar increases in information transmission, directed information through both regions was substantially reduced (>70%) following the onset of parkinsonism. Again, this decrease in information transmission was partially reversed by DBS. Together, these results suggest that the parkinsonian basal ganglia are rife with entropic activity and incapable of functional information transmission. Furthermore, they indicate that symptom-alleviating DBS works by lowering the entropic noise floor, enabling more information-rich signal propagation. In this view, the symptoms of parkinsonism may be more a default mode, normally overridden by healthy basal ganglia information. When that information is abolished by parkinsonian pathophysiology, hypokinetic symptoms emerge.


2009 ◽  
Vol 102 (4) ◽  
pp. 2526-2537 ◽  
Author(s):  
Sylvie Lardeux ◽  
Remy Pernaud ◽  
Dany Paleressompoulle ◽  
Christelle Baunez

It was recently shown that subthalamic nucleus (STN) lesions affect motivation for food, cocaine, and alcohol, differentially, according to either the nature of the reward or the preference for it. The STN may thus code a reward according to its value. Here, we investigated how the firing of subthalamic neurons is modulated during expectation of a predicted reward between two possibilities (4 or 32% sucrose solution). The firing pattern of neurons responding to predictive cues and to reward delivery indicates that STN neurons can be divided into subpopulations responding specifically to one reward and less or giving no response to the other. In addition, some neurons (“oops” neurons) specifically encode errors as they respond only during error trials. These results reveal that the STN plays a critical role in ascertaining the value of the reward and seems to encode that value differently depending on the magnitude of the reward. These data highlight the importance of the STN in the reward circuitry of the brain.


1979 ◽  
Vol 42 (2) ◽  
pp. 530-557 ◽  
Author(s):  
C. H. Bailey ◽  
V. F. Castellucci ◽  
J. Koester ◽  
E. R. Kandel

1. To account for the similarity in the kinetics of habituation between the central and peripheral components of siphon withdrawal, we have tested the idea (52) that each centrally located mechanoreceptor sensory neuron sends two branches to siphon motor neurons; one to centrally located siphon motor neurons and a collateral branch that remains in the periphery and innervates the peripheral siphon motor neurons. 2. We have found a group of peripheral siphon motor neurons and tested the connection onto these cells by central mechanoreceptors. In addition, we have defined by various electrophysiological and morphological criteria two general classes of peripheral neurons that lie along the course of the siphon nerve. 3. One class (type I) consists of only a single cell in each animal. This peripheral neuron typically has the largest cell body found lying along the siphon nerve and is the only peripheral nerve cell that appears white when viewed under epi-illumination. The type I neuron often has a highly regular firing pattern, which occurs in the absence of spontaneous synaptic input. The three-dimensional morphology of this neuron suggests a paucity of fine processes, most of which do not arborize and may terminate in the connective tissue sheath. Fine structural observations of the peripheral white cell have revealed the presence of large densecore granules. The peripheral type I neuron is similar in most of its electrophysiological and morphological properties to central neurons postulated to be neurosecretory. The peripheral white cell is, at present, the only peripheral neuron we can identify with certainty as a unique individual. 4. The second class (type II) of peripheral neurons are siphon motor neurons for the peripheral component of the siphon-withdrawal reflex. In contrast to the type I neurons, members of the second class of peripheral neurons possess smaller, more spherical cell bodies that have varying amounts of orange pigmentation and which give rise to a relatively well-developed and arborized dendritic tree. Type II neurons feature an irregular spontaneous firing pattern that is occasionally modulated by a rich spontaneous synaptic input. Peripheral siphon motor neurons have restricted motor fields that produce contraction of the mantle floor and the base of the siphon. Most of the type II neurons were found to be electrically coupled to one another. 5. The peripheral siphon motor neurons resemble the central siphon motor neurons in that they receive a collateral synapse from centrally located mechanoreceptor sensory neurons. This peripheral sensory-to-motor synapse exhibits the same kinetics of decrement as its central counterpart, both of which parallel behavioral habituation. 6. The rich mechanoreceptor input onto the relatively isolated dendritic trees of the peripheral siphon motor neurons provide a uniquely restricted neuropil to study the sensory-to-motor synapse. The peripheral motor neurons may, therefore, be a useful simple preparation for the cellular study of behavioral plasticity.


1979 ◽  
Vol 57 (10) ◽  
pp. 1073-1081 ◽  
Author(s):  
Urs Gerber ◽  
Canio Polosa

Repetitive electrical stimulation of afferent fibers in the superior laryngeal nerve (SLN) evoked depressant or excitatory effects on sympathetic preganglionic neurons of the cervical trunk in Nembutal-anesthetized, paralyzed, artificially ventilated cats. The depressant effect, which consisted of suppression of the inspiration-synchronous discharge of units with such firing pattern, was obtained at low strength and frequency of stimulation (e.g. 600 mV, 30 Hz) and was absent at end-tidal CO2 values below threshold for phrenic nerve activity. The excitatory effect required higher intensity and frequency of stimulation and was CO2 independent. The depressant effect on sympathetic preganglionic neurons with inspiratory firing pattern seemed a replica of the inspiration-inhibitory effect observed on phrenic motoneurons. Hence, it could be attributed to the known inhibition by the SLN of central inspiratory activity, if it is assumed that this is a common driver for phrenic motoneurons and some sympathetic preganglionic neurons. The excitatory effect, on the other hand, appears to be due to connections of SLN afferents with sympathetic preganglionic neurons, independent of the respiratory center.


1985 ◽  
Vol 16 (4) ◽  
pp. 390-393
Author(s):  
G. N. Akoev ◽  
Yu. N. Andrianov ◽  
N. O. Sherman

1993 ◽  
Vol 161 (2) ◽  
pp. 149-152 ◽  
Author(s):  
Masae Hosogai ◽  
Satoshi Matsuo ◽  
Shozo Nakao

2013 ◽  
Vol 111 (1) ◽  
pp. 504-509 ◽  
Author(s):  
I. Pavlov ◽  
L. P. Savtchenko ◽  
I. Song ◽  
J. Koo ◽  
A. Pimashkin ◽  
...  

2000 ◽  
Vol 83 (2) ◽  
pp. 808-827 ◽  
Author(s):  
P. E. Latham ◽  
B. J. Richmond ◽  
P. G. Nelson ◽  
S. Nirenberg

Many networks in the mammalian nervous system remain active in the absence of stimuli. This activity falls into two main patterns: steady firing at low rates and rhythmic bursting. How are these firing patterns generated? Specifically, how do dynamic interactions between excitatory and inhibitory neurons produce these firing patterns, and how do networks switch from one firing pattern to the other? We investigated these questions theoretically by examining the intrinsic dynamics of large networks of neurons. Using both a semianalytic model based on mean firing rate dynamics and simulations with large neuronal networks, we found that the dynamics, and thus the firing patterns, are controlled largely by one parameter, the fraction of endogenously active cells. When no endogenously active cells are present, networks are either silent or fire at a high rate; as the number of endogenously active cells increases, there is a transition to bursting; and, with a further increase, there is a second transition to steady firing at a low rate. A secondary role is played by network connectivity, which determines whether activity occurs at a constant mean firing rate or oscillates around that mean. These conclusions require only conventional assumptions: excitatory input to a neuron increases its firing rate, inhibitory input decreases it, and neurons exhibit spike-frequency adaptation. These conclusions also lead to two experimentally testable predictions: 1) isolated networks that fire at low rates must contain endogenously active cells and 2) a reduction in the fraction of endogenously active cells in such networks must lead to bursting.


Sign in / Sign up

Export Citation Format

Share Document