scholarly journals WIDE RANGE MODULATION INDEXES FEATURED CARRIER-BASED PWM STEPPED WAVEFORM FOR HALF-BRIDGE MODULAR MULTILEVEL CONVERTERS

2018 ◽  
Vol 19 (2) ◽  
pp. 43-53
Author(s):  
Majdee Tohtayong ◽  
Sheroz Khan ◽  
MASHKURI BIN YAACOB ◽  
Siti Hajar Yusoff ◽  
NUR SHAHIDA BINTI MIDI ◽  
...  

ABSTRACT: This paper presents simulation results of the influence of wide range modulation index values ( ) in carrier-based PWM strategy for application in generating the stepped waveform. The waveform is tested for application in single-phase half-bridge modular multilevel converters (MMCs) topology. The results presented in this paper include a variation of the fundamental component (50 Hz) in the voltage output.  It also studies total harmonic distortion of the output voltage (THDv) and the output current (THDi) when the modulation index is changed over the linear-modulation region, 0 < < 1. It also explores the effect of a modulation index greater than 1. Moreover, different output voltage shapes, as a consequence of varied  on MMCs, are also illustrated for showing the effect of varying the value of on sub-module of MMCs. ABSTRAK: Kajian ini berkenaan tentang pengaruh simulasi terhadap pelbagai nilai indeks ( ) berasaskan strategi PWM bagi menghasilkan bentuk gelombang bertingkat. Bentuk gelombang ini diuji untuk aplikasi topologi MMCs. Keputusan menunjukkan variasi pada komponen asas (50Hz) pada voltan akhir. Keputusan menunjukkan jumlah penyelarasan harmonik voltan akhir (THDv) dan arus (THDv) apabila indeks modulasi telah ditukar pada had modulasi linear, 0 < < 1. Ia juga membincangkan tentang kesan indeks modulasi lebih daripada 1. Selain itu, bentuk voltan akhir yang berbeza mengikut perubahan nilai   pada MMCs juga dilampirkan bagi menunjukkan kesan perbezaan nilai    pada sub-modul MMCs.

2018 ◽  
Vol 19 (2) ◽  
pp. 182-191 ◽  
Author(s):  
Md Sazzad Hossien Chowdhury ◽  
Md. Alal Hosen ◽  
MOHAMMAD YEAKUB ALI ◽  
AHMAD FARIS ISMAIL

ABSTRACT: This paper presents simulation results of the influence of wide range modulation index values ( ) in carrier-based PWM strategy for application in generating the stepped waveform. The waveform is tested for application in single-phase half-bridge modular multilevel converters (MMCs) topology. The results presented in this paper include a variation of the fundamental component (50 Hz) in the voltage output.  It also studies total harmonic distortion of the output voltage (THDv) and the output current (THDi) when the modulation index is changed over the linear-modulation region, 0 < < 1. It also explores the effect of a modulation index greater than 1. Moreover, different output voltage shapes, as a consequence of varied on MMCs, are also illustrated for showing the effect of varying the value of on sub-module of MMCs. ABSTRAK: Penulisan ini berkenan simulasi pengaruh pelbagai nilai indeks modulasi     ( ) dalam strategi PWM berasaskan aplikasi dalam menghasilkan bentuk gelombang yang bertingkat. Bentuk gelombang ini diuji untuk aplikasi dalam topologi MMCs. Penilaian dan hasil dari artikle ini termasuk variasi komponen asas (50 Hz) dalam voltan keluar. Ia juga meneliti jumlah penyelarasan harmonik voltan keluar (THDv) dan arus keluaran (THDi) apabila indeks modulasi ditukar dalam rantau modulasi linear, 0 < <1. Ia juga meneroka kesan indeks modulasi lebih daripada 1. Selain itu, bentuk voltan keluar yang berbeza sebagai akibat dari pelbagai  pada MMCs juga digambarkan untuk menunjukkan kesan berbeza-beza nilai  pada sub-modul MMCs.


Author(s):  
Laith M. Akram Alsaqal ◽  
Ahmed M. T. Ibraheem Alnaib ◽  
Omar Talal Mahmood

There are various types of Multilevel Converters (MCs) in addition to various types of modulation techniques for these types of MCs; the challenges in selecting the best one of them with regard to the amount of the required of components, and its harmonics content. So, a comparison study among these types has been done in this paper. For comparison study, the simulation of seven level of two popular topologies of MCs: Neutral Point Clamped (NPC) converter, and Cascaded-MCs were carried out with Matlab/Simulink software program. These converters are used to drive a single phase capacitor start motor drive. Multicarrier modulation control techniques are used for controlling the MCs; these techniques involve two main type: Level Shifted Carrier (LSC), and Phase Shifted Carrier (PSC). The comparison is made with respect to the performance factors as, the amplitude of  the Total Harmonic Distortion (THD), and the DC-bus utilization performance which measured by Root Mean Square of the output voltage Vrms at variable modulation indices and variable carrier frequency. Based on simulation results it's found, that the cascaded-MC with PSC modulation method gives best results, in addition to the Alternative Phase Opposition Disposition APOD-LSC modulation technique (with even number of modulation frequency) generate the output voltage with a lower harmonic content compared with the other techniques.


Author(s):  
J. A. Soo ◽  
M. S. Chye ◽  
Y. C. Tan ◽  
S. L. Ong ◽  
J. H. Leong ◽  
...  

Cascaded H-bridge multilevel inverter (CHBMI) is able to generate a staircase AC output voltage with low switching losses. The switching angles applied to the CHBMI have to be calculated and arranged properly in order to minimize the total harmonic distortion (THD) of the output voltage waveform. In this paper, two non-iterative switching-angle calculation techniques applied for a 15-level binary asymmetric CHBMI are proposed. Both techniques employ a geometric approach to estimate the switching angles, and therefore, the generated equations can be solved directly without iterations, which are usually time-consuming and challenging to be implemented in real-time. Apart from this, both techniques are also able to calculate the switching angles for a wide range of modulation index. The proposed calculation techniques have been validated via MATLAB simulation and experiment.


2016 ◽  
Vol 78 (5-8) ◽  
Author(s):  
N.S.M. Nazar ◽  
S. Thanakodi ◽  
N.A. Othman ◽  
H.D.M. Hidzir ◽  
M.S. Mat

It has been accepted that conventional inverters have limitation dealing with high voltage and high power applications. Lately, multilevel inverters are popular for high power applications due to its improved harmonic profile and increased power ratings. There are various literatures regarding topology and control techniques of multilevel inverters. This paper presents the performance of two Flying Capacitor Multilevel Inverter (FCMI) topologies particularly a 3-level and 5-level multilevel inverters. Besides that, concept of the topologies and its modulation techniques were described. Sinusoidal pulse width modulation (SPWM) techniques were utilized in this paper as the topologies control strategy. Two control parameters, namely the amplitude modulation index, ma and the frequency modulation index, mfwere varied in order to control the output voltage of the inverters. The model and simulation study were carried out using Matlab/Simulink software. Analyses on the performance of the two topologies were based on the fundamental voltage, output voltage waveform, output harmonic spectrum and total harmonic distortion (THD). It’s found that the five level FCMI have shown better performance in terms of THD compared to the three level FCMI in all conditions of varied ma and mf. Based on the study also, five level FCMI shows a better voltage output waveform; close to a sinusoidal waveform compared to the three level FCMI.


Author(s):  
V. srinath ◽  
Man Mohan Agarwal ◽  
D. K. Chaturvedi

In this paper, a modified Sinusoidal Pulse width Modulation (MSPWM) technique and a modified single-phase H-bridge seven-level inverter is proposed. The switching pulses for the proposed seven-level inverter are generated using a single triangular carrier waveform, a fully rectified sinusoidal signal, and three stepped reference signals (Uref1, Uref2 and Uref3). Using optimization technique, the magnitude of the stepped reference signal is determined so that the total harmonic distortion (THD) of the output voltage waveform is minimum and the fundamental component, RMS value of the voltage is improved for a given modulation index Ma as compared to the Sinusoidal Pulse width Modulation (SPWM). By the implementation of the new scheme, the seven-level of the inverter output voltage level (+Vdc, +2Vdc/3, +Vdc/3, 0, −Vdc, −2Vdc/3, −Vdc) is obtained for any given modulation index. Similarly, if only two stepped reference signals are used then the inverter will act as a five-level inverter for any modulating index ma. The proposed MSPWM and seven-level inverter are simulated on MATLAB/SIMULINK for R, R-L load and on a single-phase capacitor-start and capacitor-start-run Induction Motor.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 154
Author(s):  
Wei Yao ◽  
Jiamin Cui ◽  
Wenxi Yao

This paper presents a novel digital control scheme for the regulation of single-phase voltage source pulse width modulation (PWM) inverters used in AC power sources. The proposed scheme adopts two deadbeat controllers to regulate the inner current loop and the outer voltage loop of the PWM inverter. For the overhead of digital processing, the change of duty of PWM lags one carrier period behind the sampling signal, which is modeled as a first-order lag unit in a discrete domain. Based on this precise modeling, the deadbeat controllers make the inverter get a fast dynamic response, so that the inverter’s output voltage is obtained with a very low total harmonic distortion (THD), even when the load is fluctuating. The parameter sensitivity of the deadbeat control was analyzed, which shows that the proposed deadbeat control system can operate stably when the LC filter’s parameters vary within the range allowed. The experimental results of a 2kW inverter prototype show that the THD of the output voltage is less than 3% under resistive and rectifier loads, which verifies the feasibility of the proposed scheme. An additional advantage of the proposed scheme is that the parameter design of the controller can be fully programmed without the experience of a designer.


2018 ◽  
Vol 7 (3) ◽  
pp. 1059
Author(s):  
Mustafa Fawzi Mohammed ◽  
Ali Husain Ahmad ◽  
AbdulRahim Thiab Humod

The most concerns in the inverter's design are about, how to make the output voltage of the inverter sinusoidal at the desired fundamental frequency with low total harmonic distortion (THD). This paper presents a design and implementation of single-phase five-level inverter which is powered by single dc source and based on T-type multi-level inverters construction. The proposed inverter is built mainly by six IGBTs and two diodes. The used modulation technique is based on using two triangular carriers at 2000 Hz frequency and shifted by phase opposition disposition (POD) method. The carriers are made slightly unbalanced with their amplitudes. The over-modulation method is also introduced in the design to get the lowest possible THD effect without using filters. The inverter is simulated by MATLAB SIMULINK, implemented practically, and tested with the help of LabVIEW software.  


Sign in / Sign up

Export Citation Format

Share Document