On the composite squared error algorithm for adaptive IIR filters

Author(s):  
S.L. Netto ◽  
P. Agathoklis
Keyword(s):  
2012 ◽  
Vol 61 (2) ◽  
pp. 277-290 ◽  
Author(s):  
Ádám Csorba ◽  
Vince Láng ◽  
László Fenyvesi ◽  
Erika Michéli

Napjainkban egyre nagyobb igény mutatkozik olyan technológiák és módszerek kidolgozására és alkalmazására, melyek lehetővé teszik a gyors, költséghatékony és környezetbarát talajadat-felvételezést és kiértékelést. Ezeknek az igényeknek felel meg a reflektancia spektroszkópia, mely az elektromágneses spektrum látható (VIS) és közeli infravörös (NIR) tartományában (350–2500 nm) végzett reflektancia-mérésekre épül. Figyelembe véve, hogy a talajokról felvett reflektancia spektrum információban nagyon gazdag, és a vizsgált tartományban számos talajalkotó rendelkezik karakterisztikus spektrális „ujjlenyomattal”, egyetlen görbéből lehetővé válik nagyszámú, kulcsfontosságú talajparaméter egyidejű meghatározása. Dolgozatunkban, a reflektancia spektroszkópia alapjaira helyezett, a talajok ösz-szetételének meghatározását célzó módszertani fejlesztés első lépéseit mutatjuk be. Munkánk során talajok szervesszén- és CaCO3-tartalmának megbecslését lehetővé tévő többváltozós matematikai-statisztikai módszerekre (részleges legkisebb négyzetek módszere, partial least squares regression – PLSR) épülő prediktív modellek létrehozását és tesztelését végeztük el. A létrehozott modellek tesztelése során megállapítottuk, hogy az eljárás mindkét talajparaméter esetében magas R2értéket [R2(szerves szén) = 0,815; R2(CaCO3) = 0,907] adott. A becslés pontosságát jelző közepes négyzetes eltérés (root mean squared error – RMSE) érték mindkét paraméter esetében közepesnek mondható [RMSE (szerves szén) = 0,467; RMSE (CaCO3) = 3,508], mely a reflektancia mérési előírások standardizálásával jelentősen javítható. Vizsgálataink alapján arra a következtetésre jutottunk, hogy a reflektancia spektroszkópia és a többváltozós kemometriai eljárások együttes alkalmazásával, gyors és költséghatékony adatfelvételezési és -értékelési módszerhez juthatunk.


Author(s):  
Nadia Hashim Al-Noor ◽  
Shurooq A.K. Al-Sultany

        In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function in terms of their mean squared error values and integrated mean squared error values respectively.


2014 ◽  
Vol 2 (2) ◽  
pp. 47-58
Author(s):  
Ismail Sh. Baqer

A two Level Image Quality enhancement is proposed in this paper. In the first level, Dualistic Sub-Image Histogram Equalization DSIHE method decomposes the original image into two sub-images based on median of original images. The second level deals with spikes shaped noise that may appear in the image after processing. We presents three methods of image enhancement GHE, LHE and proposed DSIHE that improve the visual quality of images. A comparative calculations is being carried out on above mentioned techniques to examine objective and subjective image quality parameters e.g. Peak Signal-to-Noise Ratio PSNR values, entropy H and mean squared error MSE to measure the quality of gray scale enhanced images. For handling gray-level images, convenient Histogram Equalization methods e.g. GHE and LHE tend to change the mean brightness of an image to middle level of the gray-level range limiting their appropriateness for contrast enhancement in consumer electronics such as TV monitors. The DSIHE methods seem to overcome this disadvantage as they tend to preserve both, the brightness and contrast enhancement. Experimental results show that the proposed technique gives better results in terms of Discrete Entropy, Signal to Noise ratio and Mean Squared Error values than the Global and Local histogram-based equalization methods


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 329
Author(s):  
Mahdi O. Karkush ◽  
Mahmood D. Ahmed ◽  
Ammar Abdul-Hassan Sheikha ◽  
Ayad Al-Rumaithi

The current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production of thematic maps showing the variation of the bearing capacity of the soil over the whole area of Al-Basrah city correlated with several depths. The bearing capacity of soil obtained from the suggested first-order polynomial matches well with those calculated from the results of SPTs with a deviation of ±30% at a 95% confidence interval.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1237
Author(s):  
Ivan Pisa ◽  
Antoni Morell ◽  
Ramón Vilanova ◽  
Jose Lopez Vicario

Industrial environments are characterised by the non-lineal and highly complex processes they perform. Different control strategies are considered to assure that these processes are correctly performed. Nevertheless, these strategies are sensible to noise-corrupted and delayed measurements. For that reason, denoising techniques and delay correction methodologies should be considered but, most of these techniques require a complex design and optimisation process as a function of the scenario where they are applied. To alleviate this, a complete data-based approach devoted to denoising and correcting the delay of measurements is proposed here with a two-fold objective: simplify the solution design process and achieve its decoupling from the considered control strategy as well as from the scenario. Here it corresponds to a Wastewater Treatment Plant (WWTP). However, the proposed solution can be adopted at any industrial environment since neither an optimization nor a design focused on the scenario is required, only pairs of input and output data. Results show that a minimum Root Mean Squared Error (RMSE) improvement of a 63.87% is achieved when the new proposed data-based denoising approach is considered. In addition, the whole system performance show that similar and even better results are obtained when compared to scenario-optimised methodologies.


2021 ◽  
Vol 13 (14) ◽  
pp. 7612
Author(s):  
Mahdis sadat Jalaee ◽  
Alireza Shakibaei ◽  
Amin GhasemiNejad ◽  
Sayyed Abdolmajid Jalaee ◽  
Reza Derakhshani

Coal as a fossil and non-renewable fuel is one of the most valuable energy minerals in the world with the largest volume reserves. Artificial neural networks (ANN), despite being one of the highest breakthroughs in the field of computational intelligence, has some significant disadvantages, such as slow training, susceptibility to falling into a local optimal points, sensitivity of initial weights, and bias. To overcome these shortcomings, this study presents an improved ANN structure, that is optimized by a proposed hybrid method. The aim of this study is to propose a novel hybrid method for predicting coal consumption in Iran based on socio-economic variables using the bat and grey wolf optimization algorithm with an artificial neural network (BGWAN). For this purpose, data from 1981 to 2019 have been used for modelling and testing the method. The available data are partly used to find the optimal or near-optimal values of the weighting parameters (1980–2014) and partly to test the model (2015–2019). The performance of the BGWAN is evaluated by mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE), standard deviation error (STD), and correlation coefficient (R^2) between the output of the method and the actual dataset. The result of this study showed that BGWAN performance was excellent and proved its efficiency as a useful and reliable tool for monitoring coal consumption or energy demand in Iran.


2020 ◽  
Author(s):  
Seojeong Lee ◽  
Youngki Shin

Summary We propose a two-stage least squares (2SLS) estimator whose first stage is the equal-weighted average over a complete subset with k instruments among K available, which we call the complete subset averaging (CSA) 2SLS. The approximate mean squared error (MSE) is derived as a function of the subset size k by the Nagar (1959) expansion. The subset size is chosen by minimising the sample counterpart of the approximate MSE. We show that this method achieves asymptotic optimality among the class of estimators with different subset sizes. To deal with averaging over a growing set of irrelevant instruments, we generalise the approximate MSE to find that the optimal k is larger than otherwise. An extensive simulation experiment shows that the CSA-2SLS estimator outperforms the alternative estimators when instruments are correlated. As an empirical illustration, we estimate the logistic demand function in Berry et al. (1995) and find that the CSA-2SLS estimate is better supported by economic theory than are the alternative estimates.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 861
Author(s):  
Kyeung Ho Kang ◽  
Mingu Kang ◽  
Siho Shin ◽  
Jaehyo Jung ◽  
Meina Li

Chronic diseases, such as coronary artery disease and diabetes, are caused by inadequate physical activity and are the leading cause of increasing mortality and morbidity rates. Direct calorimetry by calorie production and indirect calorimetry by energy expenditure (EE) has been regarded as the best method for estimating the physical activity and EE. However, this method is inconvenient, owing to the use of an oxygen respiration measurement mask. In this study, we propose a model that estimates physical activity EE using an ensemble model that combines artificial neural networks and genetic algorithms using the data acquired from patch-type sensors. The proposed ensemble model achieved an accuracy of more than 92% (Root Mean Squared Error (RMSE) = 0.1893, R2 = 0.91, Mean Squared Error (MSE) = 0.014213, Mean Absolute Error (MAE) = 0.14020) by testing various structures through repeated experiments.


Author(s):  
W. Scott Comulada

Stata’s gsem command provides the ability to fit multilevel structural equation models (SEM) and related multilevel models. A motivating example is provided by multilevel mediation analyses (MA) conducted on patient data from Methadone Maintenance Treatment clinics in China. Multilevel MA conducted through the gsem command examined the mediating effects of patients’ treatment progression and rapport with counselors on their treatment satisfaction. Multilevel models accounted for the clustering of patient observations within clinics. SEM fit indices, such as the comparative fit index and the root mean squared error of approximation, are commonly used in the SEM model selection process. Multilevel models present challenges in constructing fit indices because there are multiple levels of hierarchy to account for in establishing goodness of fit. Level-specific fit indices have been proposed in the literature but have not been incorporated into the gsem command. I created the gsemgof command to fill this role. Model results from the gsem command are used to calculate the level-specific comparative fit index and root mean squared error of approximation fit indices. I illustrate the gsemgof command through multilevel MA applied to two-level Methadone Maintenance Treatment data.


Sign in / Sign up

Export Citation Format

Share Document