Modeling Analog Sun Sensor Current Output

Author(s):  
C.M. Cosner ◽  
D.S. Barker
Author(s):  
MARTANTO MARTANTO ◽  
RB DWISENO WIHADI ◽  
RONNY DWI AGUSULISTYO ◽  
TJENDRO TJENDRO

ABSTRAKDalam pengembangan generator tiga fasa magnet permanen diperlukan pengukuran besaran-besaran untuk melihat karakteristik generator. Besaran yang biasanya diukur adalah tegangan, arus, dan daya, namun bentuk gelombang keluaran tegangan dan arus tiap fasa kurang diperhatikan apakah sinus atau tidak. Maka perlu dirancang sebuah sistem yang bisa menampilkan bentuk gelombang tegangan dan arus sekaligus. Sistem ini diimplementasikan menggunakan sensor tegangan, sensor arus, rangkaian pengondisi sinyal, Arduino Due, dan komputer sebagai penampil menggunakan bahasa Python. Hasil pengujian diperoleh bahwa sistem bisa menampilkan bentuk gelombang keluaran tegangan dan arus, menampilkan nilai maksimum, minimum, rerata, dan rms. Nilai galat rata-rata untuk ketiga pengukuran tegangan adalah 1%, dan untuk pengukuran arus adalah 3,15%.Kata kunci: gelombang tegangan dan arus, Arduino Due, Python, tiga fasa ABSTRACTThe development of three phase permanent magnet generators require the measurement of related quantities to determine the characteristics of generator. The common measured quantities are voltage, current, and power. However the voltage and current output waveforms of each phase are not considered. Therefore a system is designed which is able to display voltage and current waveforms at once. This system is implemented using a voltage sensor, current sensor, signal conditioning circuit, Arduino Due, and a computer as a GUI using the Python programming language. The results of implementation and testing show that the GUI is able to display the voltage and current output waveforms, in addition, performs the maximum, minimum, average, and rms values. The average error value for the three voltage measurements is 1%, and for the three current measurements is 3.15%.Keywords: voltage and current waveforms, Arduino Due, Python, three phases


RSC Advances ◽  
2021 ◽  
Vol 11 (31) ◽  
pp. 19106-19112
Author(s):  
Xutao Yu ◽  
Haonan Zheng ◽  
Yanghua Lu ◽  
Runjiang Shen ◽  
Yanfei Yan ◽  
...  

In this study, a generator based on a metal/semiconductor dynamic Schottky junction has achieved ultrahigh and continuous direct current output by harvesting wind energy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 989
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

All-solid-state batteries (ASSBs) are attractive for energy storage, mainly because introducing solid-state electrolytes significantly improves the battery performance in terms of safety, energy density, process compatibility, etc., compared with liquid electrolytes. However, the ionic conductivity of the solid-state electrolyte and the interface between the electrolyte and the electrode are two key factors that limit the performance of ASSBs. In this work, we investigated the structure of a Li0.33La0.55TiO3 (LLTO) thin-film solid electrolyte and the influence of different interfaces between LLTO electrolytes and electrodes on battery performance. The maximum ionic conductivity of the LLTO was 7.78 × 10−5 S/cm. Introducing a buffer layer could drastically improve the battery charging and discharging performance and cycle stability. Amorphous SiO2 allowed good physical contact with the electrode and the electrolyte, reduced the interface resistance, and improved the rate characteristics of the battery. The battery with the optimized interface could achieve 30C current output, and its capacity was 27.7% of the initial state after 1000 cycles. We achieved excellent performance and high stability by applying the dense amorphous SiO2 buffer layer, which indicates a promising strategy for the development of ASSBs.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4905
Author(s):  
Angel Porras-Hermoso ◽  
Daniel Alfonso-Corcuera ◽  
Javier Piqueras ◽  
Elena Roibás-Millán ◽  
Javier Cubas ◽  
...  

This paper presents the development of the UPMSat-2 sun sensor, from the design to on-orbit operation. It also includes the testing of the instrument, one of the most important tasks that needs to be performed to operate a sensor with precision. The UPMSat-2 solar sensor has been designed, tested, and manufactured at the Universidad Politécnica de Madrid (UPM) using 3D printing and COTS (photodiodes). The work described in this paper was carried out by students and teachers of the Master in Space Systems (Máster Universitario en Sistemas Espaciales—MUSE). The solar sensor is composed of six photodiodes that are divided into two sets; each set is held and oriented on the satellite by its corresponding support printed in Delrin. The paper describes the choice of components, the electrical diagram, and the manufacture of the supports. The methodology followed to obtain the response curve of each photodiode is simple and inexpensive, as it requires a limited number of instruments and tools. The selected irradiance source was a set of red LEDs and halogen instead of an AM0 spectrum irradiance simulator. Some early results from the UPMSat-2 mission have been analyzed in the present paper. Data from magnetometers and the attitude control system have been used to validate the data obtained from the sun sensor. The results indicate a good performance of the sensors during flight, in accordance with the data from the ground tests.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Qian Su ◽  
Xin Liu ◽  
Yan Li ◽  
Xiaosong Wang ◽  
Zhiqiang Wang ◽  
...  

Compensation is crucial in the inductive power transfer system to achieve load-independent constant voltage or constant current output, near-zero reactive power, higher design freedom, and zero-voltage switching of the driver circuit. This article proposes a simple, comprehensive, and innovative graphic design methodology for compensation topology to realize load-independent output at zero-phase-angle frequencies. Four types of graphical models of the loosely coupled transformer that utilize the ideal transformer and gyrator are presented. The combination of four types of models with the source-side/load-side conversion model can realize the load-independent output from the source to load. Instead of previous design methods of solving the equations derived from the circuits, the load-independent frequency, zero-phase angle (ZPA) conditions, and source-to-load voltage/current gain of the compensation topology can be intuitively obtained using the circuit model given in this paper. In addition, not limited to only research of the existing compensation topology, based on the design methodology in this paper, 12 novel compensation topologies that are free from the constraints of transformer parameters and independent of load variations are stated and verified by simulations. In addition, a novel prototype of primary-series inductor–capacitance–capacitance (S/LCC) topology is constructed to demonstrate the proposed design approach. The simulation and experimental results are consistent with the theory, indicating the correctness of the design method.


Sign in / Sign up

Export Citation Format

Share Document