High perfonnance motion control of linear motors based on multirate adaptive robust control

Author(s):  
H. Fujimoto ◽  
Bin Yao
Author(s):  
Zheng Chen ◽  
Bin Yao ◽  
Qingfeng Wang

Iron-core linear motors have been widely used in high-speed/high-accuracy positioning systems due to the elimination of mechanical transmissions. Many control methodologies have been developed for linear motor motion control, such as H∞ control, adaptive control and sliding mode control. Compensations of various nonlinearities such as frictions and cogging forces have also been carried out to obtain better tracking performance. However, the relationship between the driving current and the resulting motor force has been assumed to be linear, which is invalid for high driving coil currents due to the saturating electromagnetic field effect. This paper focuses on the effective compensation of nonlinear electromagnetic field effect so that the system can be operated at even higher acceleration or heavier load without losing achievable control performance. Specifically, cubic polynomials with unknown weights are used for an effective approximation of the unknown nonlinearity between the electromagnetic force and the driving current. The effectiveness of such an approximation is verified by off-line identification experiments. An adaptive robust control (ARC) algorithm with online tuning of the unknown weights and other system parameters is then developed to account for various uncertainties. Theoretically, the proposed ARC algorithm achieves a guaranteed transient and steady-state performance for position tracking, as well as zero steady-state tracking error when subjected to parametric uncertainties only. Comparative experiments of ARC with and without compensation of electromagnetic nonlinearity done on a linear-motor-driven industrial gantry will be shown. The results show that the proposed ARC algorithm achieves better tracking performance than existing ones, validating the effectiveness of the proposed approach in practical applications.


2017 ◽  
Vol 40 (7) ◽  
pp. 2249-2258 ◽  
Author(s):  
Deyuan Meng ◽  
Aimin Li ◽  
Fei Chen ◽  
Kai Zhang

In this paper, coordinated motion control of the pneumatic-cylinder-driven biaxial gantry for precise contour tracking is investigated. An adaptive robust coordinated motion controller is developed by incorporating the task coordinate formulation into the adaptive robust control architecture. Specifically, a task coordinate frame is used to approximately calculate the contour error, which is utilized for controller design to generate coordination between two axes. Furthermore, the proposed controller utilizes online parameter adaptation to estimate some important unknown model parameters, and employs a robust control law to attenuate the effects of parameter estimation errors, unmodelled dynamics and external disturbances. Therefore, certain transient contouring performance and steady-state contour tracking accuracy can be guaranteed. Extensive comparative experimental results obtained verify the effectiveness of the proposed coordinated motion control strategy and its performance robustness to sudden disturbances in practical implementation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Cungui Yu ◽  
Xianwei Qi

This paper deals with the high performance adaptive robust motion control of electrohydraulic servo system driven by dual vane hydraulic rotary actuator. The recently developed adaptive robust control theory is used to handle the nonlinearities and modelling uncertainties in hydraulic systems. Aside from the difficulty of handling parametric variations, the traditional adaptive robust controller (ARC) is also a little complicated in practice. To address these challenging issues, a simplified adaptive robust control with varying boundary discontinuous projection is developed to enhance the robustness of the closed-loop system, based on the features of hydraulic rotary actuator. Compared with previous ARC controller, the resulting controller has a simple algorithm for more suitable implementation and can handle parametric variations via nonlinear robust design. The controller theoretically achieves a guaranteed transient performance and final tracking accuracy in the presence of both parametric uncertainties and uncertain nonlinearities. Extensive simulation results are obtained for a hydraulic rotary actuator to verify the high performance nature of proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document