A Microwave Coincidence Imaging Method for Complex Target Based on Sparse Representation

Author(s):  
Kaicheng Cao ◽  
Yongqiang Cheng ◽  
Kang Liu ◽  
Jianqiu Wang ◽  
Hongqiang Wang
2017 ◽  
Vol 14 (12) ◽  
pp. 2265-2269 ◽  
Author(s):  
Shitao Zhu ◽  
Xiaoli Dong ◽  
Ming Zhang ◽  
Rui Lu ◽  
Jianxing Li ◽  
...  

Author(s):  
T. Y. Tan ◽  
W. K. Tice

In studying ion implanted semiconductors and fast neutron irradiated metals, the need for characterizing small dislocation loops having diameters of a few hundred angstrom units usually arises. The weak beam imaging method is a powerful technique for analyzing these loops. Because of the large reduction in stacking fault (SF) fringe spacing at large sg, this method allows for a rapid determination of whether the loop is faulted, and, hence, whether it is a perfect or a Frank partial loop. This method was first used by Bicknell to image small faulted loops in boron implanted silicon. He explained the fringe spacing by kinematical theory, i.e., ≃l/(Sg) in the fault fringe in depth oscillation. The fault image contrast formation mechanism is, however, really more complicated.


Author(s):  
Akira Tonomura

Electron holography is a two-step imaging method. However, the ultimate performance of holographic imaging is mainly determined by the brightness of the electron beam used in the hologram-formation process. In our 350kV holography electron microscope (see Fig. 1), the decrease in the inherently high brightness of field-emitted electrons is minimized by superposing a magnetic lens in the gun, for a resulting value of 2 × 109 A/cm2 sr. This high brightness has lead to the following distinguished features. The minimum spacing (d) of carrier fringes is d = 0.09 Å, thus allowing a reconstructed image with a resolution, at least in principle, as high as 3d=0.3 Å. The precision in phase measurement can be as high as 2π/100, since the position of fringes can be known precisely from a high-contrast hologram formed under highly collimated illumination. Dynamic observation becomes possible because the current density is high.


2011 ◽  
Vol 59 (S 01) ◽  
Author(s):  
S Ihlenburg ◽  
A Rüffer ◽  
T Radkow ◽  
A Purbojo ◽  
M Glöckler ◽  
...  

2008 ◽  
Vol 39 (01) ◽  
Author(s):  
AJ Fallgatter ◽  
AC Ehlis ◽  
MM Richter ◽  
M Schecklmann ◽  
MM Plichta

2013 ◽  
Vol E96.B (7) ◽  
pp. 2014-2023 ◽  
Author(s):  
Ryo YAMAGUCHI ◽  
Shouhei KIDERA ◽  
Tetsuo KIRIMOTO

Sign in / Sign up

Export Citation Format

Share Document