Practical training data for support vector machine receiver in a chaos-based CDMA

Author(s):  
Johnny W. H. Kao ◽  
Stevan M. Berber ◽  
Vojislav Kecman
2019 ◽  
Vol 6 (5) ◽  
pp. 190001 ◽  
Author(s):  
Katherine E. Klug ◽  
Christian M. Jennings ◽  
Nicholas Lytal ◽  
Lingling An ◽  
Jeong-Yeol Yoon

A straightforward method for classifying heavy metal ions in water is proposed using statistical classification and clustering techniques from non-specific microparticle scattering data. A set of carboxylated polystyrene microparticles of sizes 0.91, 0.75 and 0.40 µm was mixed with the solutions of nine heavy metal ions and two control cations, and scattering measurements were collected at two angles optimized for scattering from non-aggregated and aggregated particles. Classification of these observations was conducted and compared among several machine learning techniques, including linear discriminant analysis, support vector machine analysis, K-means clustering and K-medians clustering. This study found the highest classification accuracy using the linear discriminant and support vector machine analysis, each reporting high classification rates for heavy metal ions with respect to the model. This may be attributed to moderate correlation between detection angle and particle size. These classification models provide reasonable discrimination between most ion species, with the highest distinction seen for Pb(II), Cd(II), Ni(II) and Co(II), followed by Fe(II) and Fe(III), potentially due to its known sorption with carboxyl groups. The support vector machine analysis was also applied to three different mixture solutions representing leaching from pipes and mine tailings, and showed good correlation with single-species data, specifically with Pb(II) and Ni(II). With more expansive training data and further processing, this method shows promise for low-cost and portable heavy metal identification and sensing.


2019 ◽  
Vol 11 (2) ◽  
pp. 144
Author(s):  
Danar Wido Seno ◽  
Arief Wibowo

Social media writing content growing make a lot of new words that appear on Twitter in the form of words and abbreviations that appear so that sentiment analysis is increasingly difficult to get high accuracy of textual data on Twitter social media. In this study, the authors conducted research on sentiment analysis of the pairs of candidates for President and Vice President of Indonesia in the 2019 Elections. To obtain higher accuracy results and accommodate the problem of textual data development on Twitter, the authors conducted a combination of methods to conduct the sentiment analysis with unsupervised and supervised methods. namely Lexicon Based. This study used Twitter data in October 2018 using the search keywords with the names of each pair of candidates for President and Vice President of the 2019 Elections totaling 800 datasets. From the study with 800 datasets the best accuracy was obtained with a value of 92.5% with 80% training data composition and 20% testing data with a Precision value in each class between 85.7% - 97.2% and Recall value for each class among 78, 2% - 93.5%. With the Lexicon Based method as a labeling dataset, the process of labeling the Support Vector Machine dataset is no longer done manually but is processed by the Lexicon Based method and the dictionary on the lexicon can be added along with the development of data content on Twitter social media.


2021 ◽  
Vol 5 (11) ◽  
pp. 303
Author(s):  
Kian K. Sepahvand

Damage detection, using vibrational properties, such as eigenfrequencies, is an efficient and straightforward method for detecting damage in structures, components, and machines. The method, however, is very inefficient when the values of the natural frequencies of damaged and undamaged specimens exhibit slight differences. This is particularly the case with lightweight structures, such as fiber-reinforced composites. The nonlinear support vector machine (SVM) provides enhanced results under such conditions by transforming the original features into a new space or applying a kernel trick. In this work, the natural frequencies of damaged and undamaged components are used for classification, employing the nonlinear SVM. The proposed methodology assumes that the frequencies are identified sequentially from an experimental modal analysis; for the study propose, however, the training data are generated from the FEM simulations for damaged and undamaged samples. It is shown that nonlinear SVM using kernel function yields in a clear classification boundary between damaged and undamaged specimens, even for minor variations in natural frequencies.


Author(s):  
Noviah Dwi Putranti ◽  
Edi Winarko

AbstrakAnalisis sentimen dalam penelitian ini merupakan proses klasifikasi dokumen tekstual ke dalam dua kelas, yaitu kelas sentimen positif dan negatif.  Data opini diperoleh dari jejaring sosial Twitter berdasarkan query dalam Bahasa Indonesia. Penelitian ini bertujuan untuk menentukan sentimen publik terhadap objek tertentu yang disampaikan di Twitter dalam bahasa Indonesia, sehingga membantu usaha untuk melakukan riset pasar atas opini publik. Data yang sudah terkumpul dilakukan proses preprocessing dan POS tagger untuk menghasilkan model klasifikasi melalui proses pelatihan. Teknik pengumpulan kata yang memiliki sentimen dilakukan dengan pendekatan berdasarkan kamus, yang dihasilkan dalam penelitian ini berjumlah 18.069 kata. Algoritma Maximum Entropy digunakan untuk POS tagger dan algoritma yang digunakan untuk membangun model klasifikasi atas data pelatihan dalam penelitian ini adalah Support Vector Machine. Fitur yang digunakan adalah unigram dengan fitur pembobotan TFIDF. Implementasi klasifikasi diperoleh akurasi 86,81 %  pada pengujian 7 fold cross validation untuk tipe kernel Sigmoid. Pelabelan kelas secara manual dengan POS tagger menghasilkan akurasi 81,67%.  Kata kunci—analisis sentimen, klasifikasi, maximum entropy POS tagger, support vector machine, twitter.  AbstractSentiment analysis in this research classified textual documents into two classes, positive and negative sentiment. Opinion data obtained a query from social networking site Twitter of Indonesian tweet. This research uses  Indonesian tweets. This study aims to determine public sentiment toward a particular object presented in Twitter businesses conduct market. Collected data then prepocessed to help POS tagged to generate classification models through the training process. Sentiment word collection has done the dictionary based approach, which is generated in this study consists 18.069 words. Maximum Entropy algorithm is used for POS tagger and the algorithms used to build the classification model on the training data is Support Vector Machine. The unigram features used are the features of TFIDF weighting.Classification implementation 86,81 % accuration at examination of 7 validation cross fold for the type of kernel of Sigmoid. Class labeling manually with POS tagger yield accuration 81,67 %. Keywords—sentiment analysis, classification, maximum entropy POS tagger, support vector machine, twitter.


2017 ◽  
Vol 9 (4) ◽  
pp. 416 ◽  
Author(s):  
Nelly Indriani Widiastuti ◽  
Ednawati Rainarli ◽  
Kania Evita Dewi

Classification is the process of grouping objects that have the same features or characteristics into several classes. The automatic documents classification use words frequency that appears on training data as features. The large number of documents cause the number of words that appears as a feature will increase. Therefore, summaries are chosen to reduce the number of words that used in classification. The classification uses multiclass Support Vector Machine (SVM) method. SVM was considered to have a good reputation in the classification. This research tests the effect of summary as selection features into documents classification. The summaries reduce text into 50%. A result obtained that the summaries did not affect value accuracy of classification of documents that use SVM. But, summaries improve the accuracy of Simple Logistic Classifier. The classification testing shows that the accuracy of Naïve Bayes Multinomial (NBM) better than SVM


Author(s):  
Wahyu Caesarendra

This paper presents the EMG signal classification based on PCA and SVM method. The data is acquired from the 5 subjects and each subject perform 7 hand gestures includes the tripod, power, precision closed, finger point, mouse, hand open, and hand close. Each gesture is repeated 10 times (5 data as training data and the 5 remaining data as testing data). Each of training and testing data are processed using 16 features extraction in time–domain and reduced using principal component analysis (PCA) to obtain new set of features. Features classification using support vector machine classify new set of features from each subject result 85% - 89% percentage of training classification. Training data classification is tested using testing data of EMG signals and giving accuracy reach 80% - 86%.


2011 ◽  
Vol 135-136 ◽  
pp. 63-69 ◽  
Author(s):  
Jian Guo Wang ◽  
Liang Wu Cheng ◽  
Wen Xing Zhang ◽  
Bo Qin

support vector machine (SVM) has been shown to exhibit superior predictive power compared to traditional approaches in many studies, such as mechanical equipment monitoring and diagnosis. However, SVM training is very costly in terms of time and memory consumption due to the enormous amounts of training data and the quadratic programming problem. In order to improve SVM training speed and accuracy, we propose a modified incremental support vector machine (MISVM) for regression problems in this paper. The main concepts are that using the distance from the margin vectors which violate the Karush-Kuhn-Tucker (KKT) condition to the final decision hyperplane to evaluate the importance of each margin vectors, and the margin vectors whose distance is below the specified value are preserved, the others are eliminated. Then the original SVs and the remaining margin vectors are used to train a new SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also preserved the important samples. The effectiveness of the proposed MISVMs is demonstrated with two UCI data sets. These experiments also show that the proposed MISVM is competitive with previously published methods.


2013 ◽  
Vol 336-338 ◽  
pp. 2283-2287
Author(s):  
Xin Wen Gao ◽  
Xing Jian Guan ◽  
Ben Bo Guan

This paper proposed a method to detect the defects of keyboard characters. The work, which is a part of the keyboard inspection system, integrates two key technologies to realize the recognition function. First, Feature extraction is applied to select the best properties of the keyboard characters to distinguish the difference and six features are chosen. Second, we integrate support vector machine (SVM) into the classification method and the radial basis kernel function is used to map the training data into higher dimensional space to facilitate the classification. We get a satisfied result in the classification finally which demonstrate the proposed approach is effective.


Sign in / Sign up

Export Citation Format

Share Document