A variational expression of capacitance of a thick annular ring on a dielectric substrate

Author(s):  
Yugo Takeoka ◽  
Yuta Yamaguti ◽  
Y. -D. Lin ◽  
K. Wakino ◽  
T. Kitazawa
2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


2018 ◽  
Vol 3 (1) ◽  
pp. 35 ◽  
Author(s):  
Cihat Şeker ◽  
Turgut Ozturk ◽  
Muhammet Tahir Güneşer

In this proposed paper, a single band microstrip patch antenna for fifth generation (5G) wireless application was presented. 28, 38, 60 and 73 GHz frequency bands have been allocated for 5G mobile communications by International Telecommunications Union (ITU). In this paper, we proposed an antenna, which is suitable for the millimeter wave frequency. The single band antenna consists of new slot loaded on the radiating patch with the 50 ohms microstrip line feeding used. This single band antenna was simulated on a FR4 dielectric substrate have relative permittivity 4.4, loss tangent 0.02, and height 1.6 mm. The antenna was simulated by Electromagnetic simulation, computer software technology High Frequency Structural Simulator. And simulated result on return loss, VSWR, radiation pattern and 3D gain was presented. The parameters of the results well coherent and proved the literature for millimeter wave 5G wireless application at 38 GHz.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Atiqur Rahman ◽  
Mohammad Tariqul Islam ◽  
Mandeep Singh Jit Singh ◽  
Md Samsuzzaman ◽  
Muhammad E. H. Chowdhury

AbstractIn this article, we propose SNG (single negative) metamaterial fabricated on Mg–Zn ferrite-based flexible microwave composites. Firstly, the flexible composites are synthesized by the sol-gel method having four different molecular compositions of MgxZn(1−x)Fe2O4, which are denoted as Mg20, Mg40, Mg60, and Mg80. The structural, morphological, and microwave properties of the synthesized flexible composites are analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and conventional dielectric assessment kit (DAK) to justify their possible application as dielectric substrate at microwave frequency regime. Thus the average grain size is found from 20 to 24 nm, and the dielectric constants are 6.01, 5.10, 4.19, and 3.28, as well as loss tangents, are 0.002, 0.004, 0.006, and 0.008 for the prepared Mg–Zn ferrites, i.e., Mg20, Mg40, Mg60, and Mg80 respectively. Besides, the prepared low-cost Mg–Zn ferrite composites exhibit high flexibility and lightweight, which makes them a potential candidate as a metamaterial substrate. Furthermore, a single negative (SNG) metamaterial unit cell is fabricated on the prepared, flexible microwave composites, and their essential electromagnetic behaviors are observed. Very good effective medium ratios (EMR) vales are obtained from 14.65 to 18.47, which ensure the compactness of the fabricated prototypes with a physical dimension of 8 × 6.5 mm2. Also, the proposed materials have shown better performances comparing with conventional FR4 and RO4533 materials, and they have covered S-, C-, X-, Ku-, and K-band of microwave frequency region. Thus, the prepared, flexible SNG metamaterials on MgxZn(1−x)Fe2O4 composites are suitable for microwave and flexible technologies.


Sign in / Sign up

Export Citation Format

Share Document