scholarly journals Synthesis and characterization of Mg–Zn ferrite based flexible microwave composites and its application as SNG metamaterial

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Atiqur Rahman ◽  
Mohammad Tariqul Islam ◽  
Mandeep Singh Jit Singh ◽  
Md Samsuzzaman ◽  
Muhammad E. H. Chowdhury

AbstractIn this article, we propose SNG (single negative) metamaterial fabricated on Mg–Zn ferrite-based flexible microwave composites. Firstly, the flexible composites are synthesized by the sol-gel method having four different molecular compositions of MgxZn(1−x)Fe2O4, which are denoted as Mg20, Mg40, Mg60, and Mg80. The structural, morphological, and microwave properties of the synthesized flexible composites are analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and conventional dielectric assessment kit (DAK) to justify their possible application as dielectric substrate at microwave frequency regime. Thus the average grain size is found from 20 to 24 nm, and the dielectric constants are 6.01, 5.10, 4.19, and 3.28, as well as loss tangents, are 0.002, 0.004, 0.006, and 0.008 for the prepared Mg–Zn ferrites, i.e., Mg20, Mg40, Mg60, and Mg80 respectively. Besides, the prepared low-cost Mg–Zn ferrite composites exhibit high flexibility and lightweight, which makes them a potential candidate as a metamaterial substrate. Furthermore, a single negative (SNG) metamaterial unit cell is fabricated on the prepared, flexible microwave composites, and their essential electromagnetic behaviors are observed. Very good effective medium ratios (EMR) vales are obtained from 14.65 to 18.47, which ensure the compactness of the fabricated prototypes with a physical dimension of 8 × 6.5 mm2. Also, the proposed materials have shown better performances comparing with conventional FR4 and RO4533 materials, and they have covered S-, C-, X-, Ku-, and K-band of microwave frequency region. Thus, the prepared, flexible SNG metamaterials on MgxZn(1−x)Fe2O4 composites are suitable for microwave and flexible technologies.

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1600 ◽  
Author(s):  
Alexander Tkach ◽  
André Santos ◽  
Sebastian Zlotnik ◽  
Ricardo Serrazina ◽  
Olena Okhay ◽  
...  

If piezoelectric micro-devices based on K0.5Na0.5NbO3 (KNN) thin films are to achieve commercialization, it is critical to optimize the films’ performance using low-cost scalable processing conditions. Here, sol–gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500–600 nm and (Na + K)/Nb ratio of 1.07–1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Margus Kodu ◽  
Tea Avarmaa ◽  
Hugo Mändar ◽  
Rando Saar ◽  
Raivo Jaaniso

Rare earth oxycarbonates are potential candidate materials for constructing simple and low-cost chemiresistive sensors for monitoring carbon dioxide (CO2) gas in the living and working environment for personal comfort and health reasons. Also, measurement of CO2 concentrations is needed in many industrial processes. Specifically, sol-gel made nanoparticles of Nd and La oxycarbonates have been studied previously as novel CO2 gas sensor materials. In this paper, pulsed laser deposition of La oxycarbonate (La2O2CO3) thin films was studied and structural properties of obtained thin films were characterized. Also, CO2 gas sensing ability of synthesized films was evaluated. The films deposited under CO2 partial pressure in various conditions were all Raman amorphous. In situ or ex situ annealing procedure at high CO2 partial pressure was needed for obtaining crystalline La2O2CO3 films, whereby hexagonal and monoclinic polymorphs were obtained in ex situ and in situ processes, respectively. Sensor structure, made using in situ process, was sensitive to CO2 gas and showed relatively fast response and recovery characteristics.


2000 ◽  
Vol 628 ◽  
Author(s):  
Ralf Buestrich ◽  
Frank Kahlenberg ◽  
Michael Popall ◽  
Adelheid Martin ◽  
Oliver Rösch

ABSTRACTORMOCER®*s (inorganic-organic hybrid polymers) with low Si-OH content were synthesized by a new sol-gel route. Optimization of the sol-gel process parameters (catalyst, temperature etc.) was performed in order to achieve reproducible low cost materials which are photo-patternable even in higher layer thicknesses up to 150 μm within one step without cracking or delamination. The materials combine low losses in the NIR region (0.2 dB/cm at 1310 nm and 0.5 dB/cm at 1550 nm without fluorination!) with low dielectric constants (3.3 at 10 kHz).Beside the dielectric and optical properties the materials have a variety of additional advantages for interconnection technology: good wetting and adhesion on various substrates (e.g. glass, silicon and several polymers), low processing temperatures (postbake below 160 °C), high thermal stability (up to 270 °C) and a tunable refractive index.Details of chemical synthesis and characterization as well as photo-lithographic processing of ORMOCER® materials are presented.


1930 ◽  
Vol 8 (01) ◽  
pp. 37-41
Author(s):  
Hubertus Ngaderman ◽  
Ego Srivajawaty S ◽  
Yulia Fitri

[Computation and modeling] The current solar cell technology is a technology developed by a process that is cheaper and easier in manufacturing. The solar cells sensitized by a dye below abbreviated writing that the DSSC is often also called Grätzel cells or whether the writing in Indonesian to be Sel Surya Berbasis Pewarna Tersensitisasi (SSPT). DSSC is a potential candidate in as a third generation of solar cells (coming soon) because it does not require a material with a high degree of purity so that a low-cost production process. Dye used as a sensitizer can be either synthetic or natural. Metal-based organic dye complex ruthenium using synthetic (it is expensive), but it contains heavy metals that harm the environment. To reduce the cost of DSSC develops organic based on material sensitizer. DSSC using the same principles for the process of photosynthesis that behave as a chlorophyll dye that absorbs light and produces carrier.The effectiveness of DSSC is no doubt that reaching more than 10% but with using this expensive type which is ruthenium complex metal-based organic. It is necessary to study massive research, a material awareness survey that has good performance, environmental costs. In this study will be carried out using DSSC senduduk fruit dye (Melastoma malabathricum) manufacturing and oxide semiconductors are nano materials (nanocrystals) TiO2 anatase gradually the solvotermal techniques.


Author(s):  
V. Kaushik ◽  
P. Maniar ◽  
J. Olowolafe ◽  
R. Jones ◽  
A. Campbell ◽  
...  

Lead zirconium titanate films (Pb (Zr,Ti) O3 or PZT) are being considered for potential application as dielectric films in memory technology due to their high dielectric constants. PZT is a ferroelectric material which shows spontaneous polarizability, reversible under applied electric fields. We report herein some results of TEM studies on thin film capacitor structures containing PZT films with platinum-titanium electrodes.The wafers had a stacked structure consisting of PZT/Pt/Ti/SiO2/Si substrate as shown in Figure 1. Platinum acts as electrode material and titanium is used to overcome the problem of platinum adhesion to the oxide layer. The PZT (0/20/80) films were deposited using a sol-gel method and the structure was annealed at 650°C and 800°C for 30 min in an oxygen ambient. XTEM imaging was done at 200KV with the electron beam parallel to <110> zone axis of silicon.Figure 2 shows the PZT and Pt layers only, since the structure had a tendency to peel off at the Ti-Pt interface during TEM sample preparation.


2020 ◽  
Vol 10 (2) ◽  
pp. 152-156 ◽  
Author(s):  
Muhammad Hanif bin Zahari ◽  
Beh Hoe Guan ◽  
Lee Kean Chuan ◽  
Afiq Azri bin Zainudin

Background: Rare earth materials are known for its salient electrical insulation properties with high values of electrical resistivity. It is expected that the substitution of rare earth ions into spinel ferrites could significantly alter its magnetic properties. In this work, the effect of the addition of Samarium ions on the structural, morphological and magnetic properties of Ni0.5Zn0.5SmxFe2-xO4 (x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) synthesized using sol-gel auto combustion technique was investigated. Methods: A series of Samarium-substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5SmxFe2-xO4 where x=0.00, 0.02, 0.04, 0.06, 0.08, 0.10) were synthesized by sol-gel auto-combustion technique. Structural, morphological and magnetic properties of the samples were examined through X-Ray Diffraction (XRD), Field-Emission Scanning Electron Microscope (FESEM) and Vibrating Sample Magnetometer (VSM) measurements. Results: XRD patterns revealed single-phased samples with spinel cubic structure up to x= 0.04. The average crystallite size of the samples varied in the range of 41.8 – 85.6 nm. The prepared samples exhibited agglomerated particles with larger grain size observed in Sm-substituted Ni-Zn ferrite as compared to the unsubstituted sample. The prepared samples exhibited typical soft magnetic behavior as evidenced by the small coercivity field. The magnetic saturation, Ms values decreased as the Sm3+ concentration increases. Conclusion: The substituted Ni-Zn ferrites form agglomerated particles inching towards more uniform microstructure with each increase in Sm3+ substitution. The saturation magnetization of substituted samples decreases with the increase of samarium ion concentration. The decrease in saturation magnetization can be explained based on weak super exchange interaction between A and B sites. The difference in magnetic properties between the samples despite the slight difference in Sm3+ concentrations suggests that the properties of the NiZnFe2O4 can be ‘tuned’, depending on the present need, through the substitution of Fe3+ with rare earth ions.


RSC Advances ◽  
2021 ◽  
Vol 11 (13) ◽  
pp. 7732-7737
Author(s):  
Fenying Wang ◽  
Dan Wang ◽  
Tingting Wang ◽  
Yu Jin ◽  
Baoping Ling ◽  
...  

Fluorescent molecularly imprinted polymer (FMIP) gains great attention in many fields due to their low cost, good biocompatibility and low toxicity. Here, a high-performance FMIP was prepared based on the autocatalytic silica sol–gel reaction.


2015 ◽  
Vol 2 (3-4) ◽  
pp. 201-205
Author(s):  
Igor Ille ◽  
Sebastian Mojrzisch ◽  
Jens Twiefel

Abstract Ultrasonic actuators are used for a wide field of applications. The vibration energy can be used to realize many processes like ultrasonic welding or bonding. Furthermore there are many processes which run more efficient and faster combined with ultrasonic vibration like ultrasonic-assisted turning or drilling. Piezoelectric transducers are the main part of those applications. Most of the applications have a time-variant load behavior and need an amplitude feedback control to guarantee a stable process. To ensure correct function tests of the feedback control systems have to be done. In this case the processes have to be executed in association with a high number of cycles. To emulate the behavior of the environment the automotive and aerospace industries use hardware in the loop systems since a long time but there is no such a method for ultrasonic systems. This paper presents a method to realize high dynamic load emulation for different ultrasonic applications. Using a piezoelectric transformer it is possible to reproduce load curves by active damping on the secondary side of the transformer using a current proportional digital feedback circuit. A theoretical and experimental study of hardware in the loop system for ultrasonic applications is given by this paper. The present system allows testing a wide field of feedback control algorithms with high flexibility and a high number of cycles by utilization of low-cost components. This proceeding decreases design periods in association with feedback control.


Ionics ◽  
2021 ◽  
Vol 27 (5) ◽  
pp. 2017-2025
Author(s):  
Nikolas Schiffmann ◽  
Ethel C. Bucharsky ◽  
Karl G. Schell ◽  
Charlotte A. Fritsch ◽  
Michael Knapp ◽  
...  

AbstractLithium aluminum titanium phosphate (LATP) is known to have a high Li-ion conductivity and is therefore a potential candidate as a solid electrolyte. Via sol-gel route, it is already possible to prepare the material at laboratory scale in high purity and with a maximum Li-ion conductivity in the order of 1·10−3 s/cm at room temperature. However, for potential use in a commercial, battery-cell upscaling of the synthesis is required. As a first step towards this goal, we investigated whether the sol-gel route is tolerant against possible deviations in the concentration of the precursors. In order to establish a possible process window for sintering, the temperature interval from 800 °C to 1100 °C and holding times of 10 to 480 min were evaluated. The resulting phase compositions and crystal structures were examined by X-ray diffraction. Impedance spectroscopy was performed to determine the electrical properties. The microstructure of sintered pellets was analyzed by scanning electron microscopy and correlated to both density and ionic conductivity. It is shown that the initial concentration of the precursors strongly influences the formation of secondary phases like AlPO4 and LiTiOPO4, which in turn have an influence on ionic conductivity, densification behavior, and microstructure evolution.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1099
Author(s):  
Ye-Ji Han ◽  
Se Hyeong Lee ◽  
So-Young Bak ◽  
Tae-Hee Han ◽  
Sangwoo Kim ◽  
...  

Conventional sol-gel solutions have received significant attention in thin-film transistor (TFT) manufacturing because of their advantages such as simple processing, large-scale applicability, and low cost. However, conventional sol-gel processed zinc tin oxide (ZTO) TFTs have a thermal limitation in that they require high annealing temperatures of more than 500 °C, which are incompatible with most flexible plastic substrates. In this study, to overcome the thermal limitation of conventional sol-gel processed ZTO TFTs, we demonstrated a ZTO TFT that was fabricated at low annealing temperatures of 350 °C using self-combustion. The optimized device exhibited satisfactory performance, with μsat of 4.72 cm2/V∙s, Vth of −1.28 V, SS of 0.86 V/decade, and ION/OFF of 1.70 × 106 at a low annealing temperature of 350 °C for one hour. To compare a conventional sol-gel processed ZTO TFT with the optimized device, thermogravimetric and differential thermal analyses (TG-DTA) and X-ray photoelectron spectroscopy (XPS) were implemented.


Sign in / Sign up

Export Citation Format

Share Document