Characterization of wideband low-noise distributed amplifiers in 0.15 µm Gallium arsenide process

Author(s):  
Adnin Natasha ◽  
Sudipta Chakraborty ◽  
Simon Mahon ◽  
Benny Wu ◽  
Andrew Jones ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1550
Author(s):  
Dominic Greiffenberg ◽  
Marie Andrä ◽  
Rebecca Barten ◽  
Anna Bergamaschi ◽  
Martin Brückner ◽  
...  

Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e− ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called “crater effect” which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the “crater effect” is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the “crater effect” on the detector operation.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5287
Author(s):  
Hiwa Mahmoudi ◽  
Michael Hofbauer ◽  
Bernhard Goll ◽  
Horst Zimmermann

Being ready-to-detect over a certain portion of time makes the time-gated single-photon avalanche diode (SPAD) an attractive candidate for low-noise photon-counting applications. A careful SPAD noise and performance characterization, however, is critical to avoid time-consuming experimental optimization and redesign iterations for such applications. Here, we present an extensive empirical study of the breakdown voltage, as well as the dark-count and afterpulsing noise mechanisms for a fully integrated time-gated SPAD detector in 0.35-μm CMOS based on experimental data acquired in a dark condition. An “effective” SPAD breakdown voltage is introduced to enable efficient characterization and modeling of the dark-count and afterpulsing probabilities with respect to the excess bias voltage and the gating duration time. The presented breakdown and noise models will allow for accurate modeling and optimization of SPAD-based detector designs, where the SPAD noise can impose severe trade-offs with speed and sensitivity as is shown via an example.


2005 ◽  
Author(s):  
Pawel Wierzba ◽  
Sylwia Rydzewska
Keyword(s):  

2012 ◽  
Vol 112 (12) ◽  
pp. 123722 ◽  
Author(s):  
Walid A. Hadi ◽  
Shamsul Chowdhury ◽  
Michael S. Shur ◽  
Stephen K. O'Leary

Author(s):  
C. Braggio ◽  
G. Bressi ◽  
G. Carugno ◽  
F. Della Valle ◽  
G. Galeazzi ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Kenji Ohmori ◽  
Shuhei Amakawa

Characterization of broadband noise of MOSFETs from room temperature down to 120 K in fine temperature steps is presented. A MOSFET is mounted on a reusable printed circuit board vehicle with a built-in low-noise amplifier, and the vehicle is loaded into a cryogenic chamber. The vehicle allows noise measurement in the frequency range from 50 kHz to 100 MHz. At low frequencies, it enables extraction of activation energies associated with electron trapping sites. At high frequencies, as has been suggested by noise figure measurements, the white noise of MOSFETs is shown to be dominated by the shot noise, which has much weaker temperature dependence than the thermal noise. The shot noise will be a problematic noise source in broadband RF CMOS circuits operating at cryogenic temperatures.<div><br></div>


Sign in / Sign up

Export Citation Format

Share Document